Refine search
Results 1031-1040 of 6,548
Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae Full text
2020
Alho, Lays de Oliveira Gonçalves | Souza, Jaqueline Pérola | Rocha, Giseli Swerts | Mansano, Adrislaine da Silva | Lombardi, Ana Teresa | Sarmento, Hugo | Melão, Mariada Graça Gama
Copper oxide nanoparticles (CuO NP) have been produced on a large scale due to their economically interesting thermophysical properties. This heightens the concern about risks they may pose on their release into the environment, possibly affecting non-target organisms. Microalga are important organisms in ecotoxicological studies as they are at the base of the aquatic food chain, but information about their biochemical and photosynthetic changes in response CuO NP are still scarce. We studied the effects of CuO NP in Raphidocelis subcapitata using morphological, photosynthetic and biochemical biomarkers. Our results showed that the NP affected microalgal population growth with 0.70 mg Cu L⁻¹ IC₅₀–₉₆ ₕ (inhibition concentration). Based on predicted environmental concentrations of Cu NPs in aquatic environments, our results indicate potential risks of the NP to microalgae. Algal cell size, granularity and photosynthetic efficiencies were affected by the CuO NP at 0.97 and 11.74 mg Cu L⁻¹. Furthermore, lipid metabolism was affected mostly at the highest NP concentration, but at environmentally relevant values (0.012 and 0.065 mg Cu L⁻¹) the production of sterols (structural lipids) and triacylglycerols (reserve lipid) increased. Moreover, we found evidence of cell membrane impairment at the highest CuO NP concentration, and, as a photosynthetic response, the oxygen evolving complex was its main site of action. To the best of our knowledge, this is the first study to date to investigate microalgal lipid composition during CuO NP exposure, showing that it is a sensitive diagnostic tool. This research demonstrated that CuO NP may affect the physiology of R. subcapitata, and because they were observed in a primary producer, we foresee consequences to higher trophic levels in aquatic communities.
Show more [+] Less [-]Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability Full text
2020
Li, Yunyi | Tian, Xiaoyu | Liang, Jialiang | Chen, Xinlei | Ye, Jiangyu | Liu, Yangsheng | Liu, Yuanyuan | Wei, Yunmei
A large amounts of arable land is facing a high risk of hexavalent chromium (Cr(VI)) pollution, which requires remediation using a low toxic agent. In this study, the remediation effect of amorphous iron pyrite (FeS₂₍ₐₘ₎) on Cr(VI) in Cr(VI)-contaminated soil was evaluated by systematically analyzing the variation of the leachability, bioaccessibility, phytotoxicity, and long-term stability of the remediated soil. The effectiveness of FeS₂₍ₐₘ₎ on the leachability was assessed by alkaline digestion and the toxicity characteristic leaching procedure (TCLP); the effect on the bioaccessibility was evaluated via the physiologically based extraction test (PBET) and the Tessier sequential extraction; the effect on the phytotoxicity was assessed via phytotoxicity bioassay (seed germination experiments) based on rape (Brassica napus L.) and cucumber (Cucumis Sativus L.), and the long-term stability of the Cr(VI)-remediated soil was appraised using column tests with groundwater and acid rain as the influents. The results show that FeS₂₍ₐₘ₎, with a stoichiometry of 4× exhibited a high efficiency in the remediation of Cr(VI) and decreased its leachability and bioaccessibility during the 30-day remediation period. In addition, seed germination rate, accumulation and translocation of Cr, and root and shoot elongation of rape and cucumber of remediated soil are not significantly different from those of clean soil, illustrating that FeS₂₍ₐₘ₎ is suitable for remediating Cr(VI) contaminated arable soil. The stabilization of Cr(VI) in contaminated soil using FeS₂₍ₐₘ₎ was maintained for 1575 days. The long-term effectiveness was further confirmed by the increasing amount of free Fe and Mn in the effluent and the decreasing redox potential. In summary, FeS₂₍ₐₘ₎ has an excellent efficiency for the remediation of Cr(VI), demonstrating it is a very promising alternative for use in the contaminated arable soil.
Show more [+] Less [-]Joint effect of multiple air pollutants on daily emergency department visits in Chengdu, China Full text
2020
Zhu, Yue | Wang, Yanyan | Xu, Huan | Luo, Bin | Zhang, Wei | Guo, Bing | Chen, Shiqi | Zhao, Xing | Li, Weimin
Existing studies have typically investigated only the association between single pollutants and health outcomes. However, in the real world, people are exposed to multiple air pollutants simultaneously. The effect of air pollutants on emergency department (ED) visits has not been previously studied in the Sichuan Basin, which is one of the most polluted areas. We collected nonaccidental, respiratory and cardiovascular daily ED visits and daily concentrations of PM₂.₅, PMc, CO, SO₂, NO₂ and O₃ in Chengdu, China, from 2014 to 2016. A weighted variable for the combination of multiple air pollutants was constructed to assess the joint adverse health effects. Each air pollutant was assigned a health-related weight, which indicated the pollutant’s relative contribution to the joint effect. The effects on specific subpopulations (males and females; 15–65 years old and >65 years old) were also examined. With an increase of 10 μg/m³ of the combined multiple air pollutants, the daily ED visits for nonaccidental, respiratory and cardiovascular causes increased by 0.96% (95% CI: 0.51%–1.39%), 1.19% (95% CI: 0.53%, 1.85%) and 4.36% (95% CI: 1.06%, 7.76%) at lag 1, respectively. Males presented more pronounced effects, except for cardiovascular disease, than females. Elderly individuals were found to be more sensitive than young individuals. For nonaccidental and respiratory diseases, the contributions of particulate matter (PM) were dominant among the air pollutants, whereas cardiovascular disease was mainly affected by gaseous air pollutants. The combination of multiple air pollutants was significantly associated with ED visits in the Sichuan Basin, China. The joint effect of the combination of multiple air pollutants was highest for cardiovascular disease at lag 1. The relative contributions of individual pollutants varied by disease and subpopulation. These findings suggest that under different pollution scenarios, preventive strategies should target those with different diseases and different subpopulations.
Show more [+] Less [-]Is dietary macronutrient intake associated with serum concentrations of organochlorine pesticides in humans? Full text
2020
Lee, Yu-Mi | Heo, Somi | Kim, Se-A | Lee, Duk-Hee
In the general population, chronic exposure to low-dose persistent organic pollutants (POPs), particularly organochlorine pesticides (OCPs), has been recently linked to many chronic diseases. Widespread contamination of the food chain and human adipose tissue has made avoiding exposure to these chemicals impossible; thus, alternative strategies for decreasing the chemical burden must be investigated. Recently, macronutrient intake was found to significantly modify the toxicokinetics of POPs in animal experimental studies. Thus, we evaluated whether macronutrient intake was related to serum concentrations of OCPs in healthy adults without cardio-metabolic diseases. Subjects included 1,764 adults, aged 20 years or above, who participated in the National Health and Nutrition Examination Survey 1999–2004. Macronutrient intake was assessed based on a 24-h dietary recall interview. Six individual OCPs commonly detected among the general population were evaluated as markers of OCPs and other coexisting lipophilic chemicals stored in adipose tissue and released into circulation. High fat intake was associated with lower concentrations of OCPs, while high carbohydrate intake showed the opposite result. When three types of fats were individually evaluated, both saturated fatty acids and monounsaturated fatty acids, but not polyunsaturated fatty acids, were inversely associated with serum concentrations of OCPs. Adjustment for possible confounders did not change the results. When stratified by age, gender, body mass index, and physical activity, these associations were similar in most subgroups. Thus, similar to the findings observed in animal experimental studies, a moderate-fat diet with low carbohydrate intake was related to low serum concentrations of OCPs in humans. Although these findings need to be replicated, changing dietary macronutrient intake can be investigated as a practical strategy for dealing with unavoidable lipophilic chemical mixtures such as OCPs in modern society.
Show more [+] Less [-]Female oxidative status in relation to calcium availability, metal pollution and offspring development in a wild passerine Full text
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Ruiz, Sandra | Eeva, Tapio
Both Ca deficiency and metal exposure may affect physiological and nutritional condition of breeding females altering their ability to deposit essential resources (e.g. Ca, antioxidants) into the eggs. This effect of the maternal investment into egg quality is not strictly limited to the embryonic period, but may persist after hatching, since nutrient levels in yolks can compromise nestling antioxidant status, growth and fledging success. The goal of this study was to investigate how metal pollution and Ca availability during the breeding season affect oxidative stress biomarkers and plasma biochemistry in adult female pied flycatchers (Ficedula hypoleuca). In addition, we aim to evaluate how maternal antioxidant status and body condition relate to breeding parameters and offspring oxidative balance. Females breeding in a metal-polluted area in SW Finland showed higher metal concentrations compared to the control area, although current levels were below the toxic level able to affect female physiology. In addition, Ca availability was not constraining female oxidative status and general health in the study area. Interestingly, our results suggested that antioxidant response to metals was better when Ca concentrations were high enough to cover the physiological Ca requirements in breeding females. There seems to be a subtle balance between the concentrations of Ca in the organism and the tolerance to metal-related effects that requires further research. This study supports that offspring oxidative balance and nestling development are affected by maternal body condition and antioxidant status.
Show more [+] Less [-]Assessing potential mechanisms of arsenic-induced skin lesions and cancers: Human and in vitro evidence Full text
2020
Zeng, Qibing | Zhang, Aihua
Environmental exposure to arsenic is a major public health challenge worldwide. In detailing the hallmark signs of chronic arsenic exposure, previous studies have shown that epigenetic and immune dysfunction are associated with arsenic-induced skin lesions; however, knowledge regarding interactions between the mechanisms listed above is limited. In this study, a total of 106 skin samples were collected over the past 20 years. Based on the presence or absence of high arsenic exposure, the participants were divided into arsenic exposure (72) and reference (34) groups. Additionally, the arsenic exposure group was further divided into the non-cancer group (31, including skin hyperpigmentation and hyperkeratosis) and the skin cancer group (41, including Bowen’s disease, basal cell carcinoma and squamous cell carcinoma) according to a skin histopathological examination. First, the associations among miR-155, NF-AT1 with immunological dysfunction and arsenic-induced skin lesions and carcinogenesis were confirmed using these skin samples. In the arsenic-exposed group, miR-155–5p, keratin 1(Krt1), keratin 10 (Krt10), and keratin 6c (Krt6c) were significantly increased in the skin (p < 0.05), while NF-AT1, interleukin-2 (IL-2), and interferon-γ (IFN-γ) were significantly decreased (p < 0.05). Clear correlations were observed among these factors (p < 0.05). In immortalized human keratinocytes, silencing and overexpression of NF-AT1 could alter the expression and secretion of immunological dysfunction indicators (IL-2 and IFN-γ) that are induced by arsenic exposure (p < 0.05); however, miR-155–5p levels did not change significantly (p > 0.05). The miR-155–5p mimic and inhibitor could regulate the NF-AT1-mediated immunological dysfunction caused by arsenic (p < 0.05). Our study provides some limited evidence that miR-155–5p regulates the NF-AT1-mediated immunological dysfunction that is involved in the pathogenesis and carcinogenesis of arsenic. The second major finding was that Krt1 and Krt10 are markers of hyperkeratosis caused by arsenic, and Krt6c is a potential biomarker that can reflect arsenic carcinogenesis.
Show more [+] Less [-]Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice Full text
2020
Wu, Yun | Yang, Lei | Gong, Hua | Dang, Fei | Zhou, Dong-Mei
Interaction between silver nanoparticles (AgNPs) and iron plaque, which forms at the root surface of wetland plants under waterlogging conditions, is a critical process that controls the bioavailability of AgNPs. In this study, we comparatively evaluated how and to what extent iron plaque affected silver uptake sourced from metallic (Ag⁰NPs) and sulfidized (Ag₂S-NPs) silver nanoparticles under hydroponic conditions. After the formation of iron plaque at the root surface upon exposure to Fe²⁺ at 0–100 μg mL⁻¹, rice (Oryza sativa L.) seedlings were transferred to AgNP suspensions. Silver uptake depended on the amount of iron plaque and AgNP species (Ag⁰NPs vs. Ag₂S-NPs): Ag₂S-NP exposure had lower or comparable Ag uptake to that of Ag⁰NP exposure at low levels of Fe²⁺ (0–80 μg mL⁻¹), but significantly higher Ag uptake at 100 μg Fe²⁺ mL⁻¹. Such contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs were attributed to their influences on AgNP dissolution. However, the translocation factors (TFs) and particle size distribution of NPs in planta (as determined by single-particle inductively coupled plasma-mass spectrometry analysis) were not affected by the amount of iron plaque. These results reveal contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs, and raise concerns about the exposure of wetland plants to Ag₂S-NPs in Fe-rich environments, where high Fe levels may facilitate Ag₂S-NP bioavailability.
Show more [+] Less [-]Can atmospheric pollutants influence menstrual cycle function? Full text
2020
Giorgis-Allemand, L. | Thalabard, J.C. | Rosetta, L. | Siroux, V. | Bouyer, J. | Slama, R.
A few experimental studies suggest that atmospheric pollutants could affect the endocrine system, and in particular stress hormones and the hypothalamic-hypophyseal-ovarian axis, which could in turn influence menstrual cycle function. We aimed to study the possible short-term effects of atmospheric pollutants on the length of the follicular and luteal phases and on the duration of the menstrual cycle in humans. To do so, from a nation-wide study on couples’ fecundity, we recruited 184 women not using contraception who collected urine samples at least every other day during one menstrual cycle, from which a progesterone metabolite was assayed, allowing estimation of the duration of the follicular and luteal phases of the cycle. Atmospheric pollution (nitrogen dioxide and particulate matter with an aerodynamical diameter below 10 μm, PM₁₀) levels were estimated from a dispersion model with a 1-km resolution combined with permanent monitoring stations measurements, allowing to estimate exposures in the 30-day, 1–10 and 11-30-day periods before the start of the menstrual cycle. Regression models allowed to quantify the change in cycle duration associated with atmospheric pollutants and adjusted for potential confounders. Follicular phase duration increased on average by 0.7 day (95% confidence interval, CI, 0.2; 1.3) for each increase by 10 μg/m³ in NO₂ concentration averaged over the 30 days before the cycle and by 1.6 day (95% CI, 0.3; 2.9) for each increase by 10 μg/m³ in PM₁₀. There was no strong evidence of associations of exposures in this time window with luteal phase or with total menstrual cycle durations (p > 0.2). Exposures in the 1–10 day period before the cycle start were also associated with increased follicular phase duration. This study is one of the first prospective studies to suggest short-term alterations in follicular phase duration following atmospheric pollutants exposure.
Show more [+] Less [-]Field survey of environmental estrogen pollution in the coastal area of Tokyo Bay and Nagasaki City using the Japanese common goby Acanthogobius flavimanus Full text
2020
Song, Jing | Nagae, Masaki | Takao, Yuji | Soyano, Kiyoshi
Endocrine disrupting chemicals (EDCs) are common pollutants in coastal waters. To investigate the estrogen risk of EDCs in the coastal areas of Japan, the Japanese common goby, which is a commonly observed species in these waters, was used as the target fish. Plasma 17β-estradiol (E₂) and vitellogenin (VTG) levels were analyzed and the gonads of fish collected from the Taira River (northern Nagasaki, reference site), Nagasaki Port, and two sites in Tokyo Bay were observed. Abnormal levels (>150 ng/mL, p < 0.05) of plasma VTG and high levels of plasma E₂ were detected in the fish from Nagasaki Port and Tokyo Bay, whereas the levels of both were low in the fish from the Taira River. The target EDCs, including natural estrogen [estrone (E₁), and E₂] and alkylphenols [4-t-octylphenol (4-t-OP), 4-nonylphenol (4-NP), and bisphenol-A (BPA)] in water samples were quantified using gas chromatography tandem mass spectrometry (GC/MS/MS), respectively. It was observed that the E₂-equivalent (EEQ) in Nagasaki Port and Tokyo Bay, which was calculated from the actual EDC measurement value, were almost 20- and 150-fold higher, respectively, than that at the reference site (Taira River, 0.021 ng/L). The EEQs mostly comprised natural estrogen in the sampling sites, although there was some influence of alkylphenols. There was an association between the EEQ and the E₂ in environmental water, suggesting a high estrogen risk in Japan coastal waters. Moreover, the results indicated that abnormal VTG synthesis was induced by environmental estrogen (EE) pollution in Nagasaki Port and Tokyo Bay.
Show more [+] Less [-]Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc Full text
2020
Li, Hua | Xu, Han | Song, Hai-Liang | Lu, Yi | Yang, Xl (Xiaoli)
The effects of the continuous accumulation of Zinc (Zn) on the fate of antibiotic resistance genes (ARGs) in constructed wetland-microbial fuel cells (CW-MFCs) remain unclear. In this study, the impacts of Zn addition and a circuit mode on antibiotic removal, occurrence of ARGs, the bacterial community, and bacterial functions were investigated in three groups of CW-MFCs. The results showed that continuous Zn exposure enriched the target ARGs during the initial stage, while excessive Zn accumulation decreased antibiotic removal and the abundance of ARGs. A principal component analysis demonstrated that ARGs and the bacterial community distribution characteristics were significantly impacted by the mass accumulation of antibiotics and Zn, as well as the circuit mode. A redundancy analysis, partial least squares path modeling, and Procrustes analysis revealed that the accumulation of antibiotics and Zn, the composition of the bacterial community, the circuit mode, and the abundance of intI associated with horizontal gene transfer jointly contributed to the distributions of ARGs in the electrodes and effluent. Moreover, continuous exposure to Zn decreased the bacterial diversity and changed the composition and function of the bacterial community predicted using PICRUSt tool. The co-occurrence of ARGs, their potential hosts and bacterial functions were further revealed using a network analysis. A variation partition analysis also showed that the accumulation of target pollutants and the circuit mode had a significant impact on the bacterial community composition and functions. Therefore, the interaction among ARGs, the bacterial community, bacterial functions, and pollutant accumulations in the CW-MFC was complex. This study provides useful implications for the application of CW-MFCs for the treatment of wastewater contaminated with antibiotics and heavy metals.
Show more [+] Less [-]