Refine search
Results 1041-1050 of 7,240
Transformation of arsenic species by diverse endophytic bacteria of rice roots
2022
Chen, Chuan | Yang, Baoyun | Gao, Axiang | Yu, Yu | Zhao, Fang-Jie
Rice growing in flooded paddy soil often accumulates considerable levels of inorganic and organic arsenic (As) species, which may cause toxicity to plants and/or pose a risk to human health. The bioavailability and toxicity of As in soil depends on its chemical species, which undergo multiple transformations driven primarily by soil microbes. However, the role of endophytes inside rice roots in As species transformation remains largely unknown. We quantified the abundances of microbial functional genes involved in As transformation in the endosphere and rhizosphere of rice roots growing in three paddy soils in a pot experiment. We also isolated 46 different bacterial endophytes and tested their abilities to transform various As species. The absolute abundances of the arsenate reductase gene arsC and the dissimilatory arsenate reductase gene arrA in the endosphere were comparable to those in the rhizosphere, whereas the absolute abundances of the arsenite methylation gene arsM and arsenite oxidation gene aioA in the endosphere were lower. After normalization based on the bacterial 16S rRNA gene, all four As transformation genes showed higher relative abundances in the endosphere than in the rhizosphere. Consistent with the functional gene data, all of the 30 aerobic endophytic isolates were able to reduce arsenate, but only 3 strains could oxidize arsenite. Among the 16 anaerobic endophytic isolates, 4 strains belonging to Desulfovibrio, Terrisporobacter or Clostridium could methylate arsenite and/or methylarsenite. Six strains of aerobic endophytes could demethylate methylarsenite, among which three strains also could reduce and demethylate methylarsenate. None of the isolates could demethylate dimethylarsenate. These results suggest that diverse endophytes living inside rice roots could participate in As species transformation and affect As accumulation and species distribution in rice plants.
Show more [+] Less [-]An interval two-stage fuzzy fractional programming model for planning water resources management in the coastal region – A case study of Shenzhen, China
2022
Li, Xiaoyang | Huang, Guohe | Wang, Shuguang | Li, Yongping | Zhang, Xiaoyue | Zhou, Xiong
In this study, an interval two-stage fuzzy fractional programming (TFFP) method is developed to facilitate collaborative governance of economy and water resources. Methods of interval programming, fuzzy programming, two-stage programming, and fractional programming are integrated within a general system optimization framework. The main contribution of TFFP is simultaneously addressing various uncertainties and tackling trade-offs between environmental and economic objectives in the optimized schemes for water resources allocation. A case study of a highly urbanized coastal city (i.e., Shenzhen) in China is provided as an example for demonstrating the proposed approach. According to the results, industrial sectors should receive 34.8% of total water supply, while agricultural sectors should receive 1.5%. For the spatial allocation of water resources, Bao An, Long Gang, and Fu Tian districts should be allocated 21.6%, 20.5%, and 14.8% water to promote the economic development. The discharge analysis indicates that chemical oxygen demand (CODcᵣ) and total phosphorus (TP) would be key pollutants. Moreover, the optimized seawater desalination volume would be negligibly influenced by price, while the upper bounds of desalination would be increased with the raising acceptable credibility levels in the period of 2031–2035. Analysis of desalination prices also reveals that the decision-makers should increase the scale of desalination in the period of 2021–2025. In addition, the effectiveness and applicability of TFFP would be evaluated under economic maximization scenarios. The result showed that the economic maximization scenario could obtain higher economic benefits, but it would be accompanied by a larger number of pollutant discharges. It is expected that this study will provide solid bases for planning water resources management systems in coastal regions.
Show more [+] Less [-]ElNFS1, a nitroreductase gene from Enterobacter ludwigii, confers enhanced detoxification and phytoremediation of 4-nitrobenzaldehyde in rice
2022
Li, Zhenjun | Gao, Jianjie | Tian, Yongsheng | Wang, Bo | Xu, Jing | Fu, Xiaoyan | Han, Hongjuan | Wang, Lijuan | Zhang, Wenhui | Wang, Yu | Deng, Yongdong | Gong, Zehao | Peng, Rihe | Yao, Quanhong
4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated. The cytosol-targeted ElNFS1 transgenic plants were selected to comprehensively examine their physio-biochemical responses and phytoremediation potential to 4-NBA. Our results showed that the transgenic plants exhibited strong tolerance to 4-NBA. Overexpression of ElNFS1 could significantly alleviate 4-NBA-induced damages of photosynthetic apparatus and reactive oxygen species overproduction in transgenic plants. The phytoremediation assay revealed that transgenic plants could remove more 4-NBA from the medium than wild-type plants. HPLC and LC-MS assays showed that 4-aminobenzaldehyde was found in the reductive products of 4-NBA. Altogether, the function of ElNFS1 during 4-NBA detoxification was characterized for the first time, which provides a strong theoretical support for the application potential of ElNFS1 transgenic plants on the phytoremediation of 4-NBA.
Show more [+] Less [-]The evolving role of weather types on rainfall chemistry under large reductions in pollutant emissions
2022
Tso, Chak-Hau Michael | Monteith, D. T. | Scott, Tony | Watson, Helen | Dodd, Beverley | Pereira, M Glória | Henrys, Peter | Holloway, Michael | Rennie, Susannah | Lowther, Aaron | Watkins, John | Killick, Rebecca | Blair, Gordon
Long-term change and shorter-term variability in the atmospheric deposition of pollutants and marine salts can have major effects on the biogeochemistry and ecology of soils and surface water ecosystems. In the 1980s, at the time of peak acid deposition in the UK, deposition loads were highly dependent on prevailing weather types, and it was postulated that future pollution recovery trajectories would be partly dependent on any climate change-driven shifts in weather systems. Following three decades of substantial acidic emission reductions, we used monitoring data collected between 1992 and 2015 from four UK Environmental Change Network (ECN) sites in contrasting parts of Great Britain to examine the trends in precipitation chemistry in relation to prevailing weather conditions. Weather systems were classified on the basis of Lamb weather type (LWT) groupings, while emissions inventories and clustering of air mass trajectories were used to interpret the observed patterns. Concentrations of ions showed clear differences between cyclonic-westerly-dominated periods and others, reflecting higher marine and lower anthropogenic contributions in Atlantic air masses. Westerlies were associated with higher rainfall, higher sea salt concentrations, and lower pollutant concentrations at all sites, while air mass paths exerted additional controls. Westerlies therefore have continued to favour higher sea salt fluxes, whereas emission reductions are increasingly leading to positive correlations between westerlies and pollutant fluxes. Our results also suggest a shift from the influence of anthropogenic emissions to natural emissions (e.g., sea salt) and climate forcing as they are transported under relatively cleaner conditions to the UK. Westerlies have been relatively frequent over the ECN monitoring period, but longer-term cyclicity in these weather types suggests that current contributions to precipitation may not be sustained over coming years.
Show more [+] Less [-]Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation
2022
Chen, Chia-Hui | Guo, Bei-Chia | Hu, Po-An | Lee, Hsueh-Te | Hu, Hsuan-Yun | Hsu, Man-Chen | Chen, Wen-Hua | Lee, Tzong-Shyuan
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe⁻/⁻) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe⁻/⁻ mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
Show more [+] Less [-]Effects of manganese, iron and sulfur geochemistry on arsenic migration in the estuarine sediment of a small river in Xiamen, Southeast China
2022
Cai, Yu | Wang, Bo | Pan, Feng | Fu, Yuyao | Guo, Weidong | Guo, Zhanrong | Liu, Huatai
The geochemistry of iron (Fe), manganese (Mn) and sulfur (S) and their effects on arsenic (As) mobility in the mudflats of small river estuaries remain unclear. Here, diffusive gradient in thin films (DGT) and high-resolution dialysis (HR-Peeper) techniques combined with a sequential extraction procedure (BCR) were employed to investigate As, Fe, Mn and S geochemistry in the mudflat of the Jiuxi River estuary, Southeast China. Grain size analysis indicated that fine-grained particles were likely to be deposited in the estuarine intertidal zone and coastal area. DGT and HR-Peeper results revealed that in the estuary and coastal area, the dissolved As in sediment in summer was controlled by Mn geochemistry, which includes not only the release of As through Mn/Fe reduction but also the stabilization of dissolved As in pore water. This stabilization of dissolved As may due to the formation of As–Mn-OM complexes. In winter, the significant positive correlations between DGT-Fe, DGT-Mn, DGT-As and DGT-S indicated that sulfate reduction was the start of As mobilization in sediment in winter. In both the estuary and the coastal area, the easily reducible Fe, Mn and As contents in intertidal sediment were higher than those in the subtidal zone. Combined with the As flux across the sediment-overlying water interface (SWI), these phenomena suggested that As in subtidal sediment diffused into overlying water and that As in overlying water tended to accumulate in the intertidal sediment. The total organic carbon content (TOC) and DGT results in the lower reach, estuary and coastal areas indicated that organic matter is the controlling factor of Fe/Mn reduction, sulfate reduction and As mobilization. The BCR test results showed higher reactive fraction contents of Fe, Mn and As in winter sediment, which threaten the overlying water quality.
Show more [+] Less [-]Occurrence of ingested human litter in winter arctic foxes (Vulpes lagopus) from Svalbard, Norway
2022
Hallanger, Ingeborg G. | Ask, Amalie | Fuglei, Eva
The aim of this study is to assess the occurrence of human litter ingested by arctic foxes (Vulpes lagopus) caught in Svalbard, Norway, in winter when scavenging is at its highest. Twenty arctic fox stomachs and intestines were examined for human litter and plastic using the protocol from the Oslo-Paris Convention (OSPAR) for monitoring plastic ingestion by the northern fulmar (Fulmarus glacialis) (human litter and plastic >1 mm). The arctic foxes had ingested human litter at a low frequency (15%, 3 out of 20 foxes). Despite the low sample size, we do not regard ingestion of human litter as an immediate threat to the arctic fox population in Svalbard.
Show more [+] Less [-]Phytotoxic effects of plastic pollution in crops: what is the size of the problem?
2022
Hartmann, Gustavo Führ | Ricachenevsky, Felipe Klein | Silveira, Neidiquele Maria | Pita-Barbosa, Alice
Plastic pollution is one of the most impactful human interferences in our planet. Fragmentation of plastic leads to nano- and microplastics (NP/MP) formation, which accumulate in agricultural lands, representing an increasing risk for crop production and food safety. It has been shown that MP promote damage in plant tissues by several direct and indirect ways, and that NP can enter the tissues/cells and accumulate in edible organs. Investigation of the phytotoxic effects of NP/MP in plants started only in 2016, with most of the studies performed with crops. Since contradictory results are often observed, it is important to review the literature in order to identify robust effects and their possible mechanisms. In this review, we discuss the potential of NP/MP in damaging crop species, with focus on the physiological changes described in the literature. We also performed scientometrics analyses on research papers in this field during 2016–2021, to reveal the research situation of phytotoxic effects of plastic pollution in crops. Our review is as a starting point to help identify gaps and future directions in this important, emerging field.
Show more [+] Less [-]Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics
2022
Chen, Gaobin | Fu, Qianmin | Tan, Xiaofei | Yang, Hailan | Luo, Yang | Shen, Maocai | Ku, Yenlin
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Show more [+] Less [-]Sediment spiking and equilibration procedures to achieve partitioning of uranium similar to contamination in tropical wetlands near a mine site
2022
Harford, Andrew J. | Simpson, Stuart L. | Humphrey, Christopher L. | Parry, David L. | Kumar, Anu | Chandler, Lisa | Stauber, Jennifer L. | van Dam, Rick A.
The derivation of sediment quality guideline values (SQGVs) presents significant challenges. Arguably the most important challenge is to conduct toxicity tests using contaminated sediments with physico-chemistry that represents real-world scenarios. We used a novel metal spiking method for an experiment that ultimately aims to derive a uranium SQGV. Two pilot studies were conducted to inform the final spiking design, i.e. percolating a uranyl sulfate solution through natural wetland sediments. An initial pilot study that used extended mixing equilibration phases produced hardened sediments not representative of natural sediments. A subsequent percolation method produced sediment with similar texture to natural sediment and was used as the method for spiking the sediments. The range of total recoverable uranium (TR-U) concentrations achieved was 8–3200 mg/kg. This reflected the concentrations found in natural wetlands and water management ponds found on a uranium mine site and was above natural levels. Dilute-acid extractable uranium (AE-U) concentrations were >80% of total concentrations, indicating that much of the uranium in the spiked sediment was labile and potentially bioavailable. The portion of TR-U extractable as AE-U was similar at the start and end of the 4.5-month field-deployment. Porewater uranium (PW–U) analyses indicated that partition coefficients (Kd) were 2000–20,000 L/kg, and PW-U was greater in post- than pre-field-deployed samples when TR-U was ≤1500 mg/kg, indicating the binding became weaker during the field-deployment period. At higher spiked-U concentrations, the PW-U was lower post-field-deployment. Comparing the physico-chemical data of the spiked sediments with environmental monitoring data from sediments in the vicinity of a uranium mining operation indicated that they were representative of sediments contaminated by mining and that the U-spiked sediments had a clear U concentration gradient. This confirmed the suitability of the spiking procedure for preparing sediments that were suitable for deriving a SQGV for uranium.
Show more [+] Less [-]