Refine search
Results 1051-1060 of 8,074
Through quorum sensing, Pseudomonas aeruginosa resists noble metal-based nanomaterials toxicity Full text
2021
Li, Zhangqiang | Zhang, Yunyun | Huang, Dan | Huang, Le | Zhang, Haibo | Li, Na | Wang, Meizhen
Noble metal–based nanomaterials (NMNs), such as platinum nanoparticles (Pt@NPs) and palladium nanoparticles (Pd@NPs), are increasingly being used as antibacterial agents. However, little information is available on bacterial resistance to NMNs. In this study, owing to their oxidase-like and peroxidase-like properties, both Pt@NPs and Pd@NPs induce reactive oxygen species (ROS) and manifest antibacterial activities: 6.25 μg/mL of either Pt@NPs or Pd@NPs killed >50% of Staphylococcus aureus strain ATCC29213. However, Pseudomonas aeruginosa strain PAO1 completely resisted 12.5 μg/mL of Pt@NPs and 6.25 μg/mL of Pd@NPs. Compared to the non-NMN groups, these NMNs promoted 2–3-fold upregulation of the quorum sensing (QS) gene lasR in strain PAO1. In fact, the lasR gene upregulation induced a 1.5-fold reduction in ROS production and increased biofilm formation by 11% (Pt@NPs) and 27% (Pd@NPs) in strain PAO1. The ΔlasR mutants (lasR gene knock out in strain PAO1), became sensitive to NMNs. The survival rates of ΔlasR mutants at 12.5 μg/mL Pt@NPs and Pd@NPs treatments were only 77% and 58%, respectively. This is the first report indicating that bacteria can resist NMNs through QS. Based on these results, evaluation of the ecological risks of using NMNs as antibacterial agents is necessary.
Show more [+] Less [-]Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species Full text
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Show more [+] Less [-]The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air Full text
2021
Mishra, Disha | Yadav, Ranu | Pratap Singh, Raghvendra | Taneja, Ajay | Tiwari, Rahul | Khare, Puja
The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m³ to 80 m³) and in different size fractions of aerosol (<0.25 μm–2.5 μm). The composite system had high encapsulation efficiency (88–91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm⁻³ to 2.33 log CFUm⁻³) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 μm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.
Show more [+] Less [-]Analysis of lead distribution in avian organs by LA-ICP-MS: Study of experimentally lead-exposed ducks and kites Full text
2021
Torimoto, Ryouta | Ishii, Chihiro | Sato, Hiroshi | Saitō, Keisuke | Watanabe, Yukiko | Ogasawara, Kohei | Kubota, Ayano | Matsukawa, Takehisa | Yokoyama, Kazuhito | Kobayashi, Atsushi | Kimura, Kei | Nakayama, Shouta M.M. | Ikenaka, Yoshinori | Ishizuka, Mayumi
Lead poisoning of wild birds by ingestion of lead ammunition occurs worldwide. Histopathological changes in organs of lead-intoxicated birds are widely known, and lead concentration of each organ is measurable using mass spectrometry. However, detailed lead localization at the suborgan level has remained elusive in lead-exposed birds. Here we investigated the detailed lead localization in organs of experimentally lead-exposed ducks and kites by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In both the ducks and kites, lead accumulated diffusely in the liver, renal cortex, and brain. Lead accumulation was restricted to the red pulp in the spleen. With regard to species differences in lead distribution patterns, it is noteworthy that intensive lead accumulation was observed in the arterial walls only in the kites. In addition, the distribution of copper in the brain was altered in the lead-exposed ducks. Thus, the present study shows suborgan lead distribution in lead-exposed birds and its differences between avian species for the first time. These findings will provide fundamental information to understand the cellular processes of lead poisoning and the mechanisms of species differences in susceptibility to lead exposure.
Show more [+] Less [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella Full text
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
Show more [+] Less [-]Historical control data in ecotoxicology: Eight years of tests with the copepod Acartia tonsa Full text
2021
Rotolo, Flavio | Vitiello, Valentina | Pellegrini, David | Carotenuto, Ylenia | Buttino, Isabella
The calanoid copepod Acartia tonsa is one of the most frequently used organisms in acute, short-term bioassays to assess effects induced by marine matrices or chemicals on different life stages. Physiological responses in such tests can be highly variable and historical control data (HCD), values recorded from previous studies performed under similar conditions, can be useful to recognise the average responses over time. Here, we analysed egg hatching success and larval (naupliar) immobilisation/mortality of A. tonsa Mediterranean strain, cultured in laboratory conditions since 2008 and used as model organisms in ecotoxicology tests. Our aims were to evaluate the physiological response and sensitivity of A. tonsa over eight years of bioassays, and to compare our HCD with reference values, in order to assess the suitability of such a long-term culture for ecotoxicology studies. Acartia tonsa eggs were exposed for 48 h to the reference toxicant nickel chloride (NiCl₂) and the % of egg hatching success and naupliar viability were compared to controls. A total of 59 acute tests, displayed in Shewhart-like control charts, showed a high mean percentage of egg hatching success (85.60% ± 5.90 SD) recorded for the whole period, and a low mean percentage of naupliar immobilisation/mortality (6.73% ± 6.38 SD) in controls. Effective concentration (EC₅₀) for NiCl₂ registered a stable mean of 0.14 mg Ni/L (± 0.047 SD) over time. Overall, our long-term dataset confirms the suitability of this copepod species for ecotoxicology studies even after years of culturing in laboratory conditions. It is advisable that other laboratories with long-term datasets made their own control charts, to allow data comparison and to improve test protocols. Considering our HCD, we suggest an EC₅₀ of NiCl₂ of 0.14 ± 0.09 mg Ni/L for acute tests with the Mediterranean strain of A. tonsa.
Show more [+] Less [-]Historical deposition of PAHs in mud depocenters from the Southwestern Atlantic continental shelf: The influence of socio-economic development and coal consumption in the last century Full text
2021
Timoszczuk, Cristian Taboada | dos Santos, Felipe Rodrigues | Araújo, Lígia Dias | Taniguchi, Satie | Lourenço, Rafael André | Mahiques, Michel Michaelovitch de | de Lima Ferreira, Paulo Alves | Lopes Figueira, Rubens Cesar | Neves, Patricia Andrade | Prates, Denise | Bícego, Márcia Caruso
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in four dated sediment cores collected in mud depocenters of the southern Brazilian continental shelf. Core dating results covered the interval between 1925 and 2017. The total PAH concentrations (ΣPAHs) ranged from 44.69 ng g⁻¹ to 305.43 ng g⁻¹ and were similar between the analysed cores. Fine-grained sediments and total organic carbon (TOC) results did not correlate with the ΣPAHs, indicating that the variations in PAH concentrations are mostly related to variations in sources and emissions. PAH source appointment indicated a high input of a natural compound (perylene) and the predominance of anthropogenic PAHs from coal, biomass, and fuel combustion. Alkylated PAHs presented high contributions throughout all cores. The historical deposition of PAHs was associated with different periods of the socio-economic and industrial development of near coastal cities and reflected very well the history of coal production and consumption in the southern region of Brazil. The low levels of ΣPAHs before 1945 in all analysed cores may be related to the beginning of the industrialization process and the lower urbanization degree in the region. Between 1945 and 1965, the gradual ΣPAHs increase reflects the establishment and enlargement of the southern Brazilian industrial sector. The interval between 1965 and 1990 corresponded to the highest ΣPAHs in three of the four analysed cores. After 1990, a relative decrease in the ΣPAHs was observed in most cores and may be related the multiple cuts of incentives to the industrial usage of coal, as well as to Brazil's efforts in environmental regulation for coal extraction and consumption.
Show more [+] Less [-]Level, distribution and sources of plutonium in the northeast and north China Full text
2021
Zhang, Weichao | Hou, Xiaolin | Zhang, Haitao | Wang, Yanyun | Dang, Haijun | Xing, Shan | Chen, Ning
Concentrations of ²³⁹Pu and ²⁴⁰Pu in 163 surface soil samples and five soil cores collected from the northeast and north China were analyzed using the radiochemical separation combined with inductively coupled plasma mass spectrometry measurement. The average ²⁴⁰Pu/²³⁹Pu atomic ratios (0.185 ± 0.018) for all surface soil samples indicated that the global fallout is the major source of plutonium in the studied region. The ²³⁹,²⁴⁰Pu concentrations of the surface soil ranged from 0.002 mBq/g to 4.82 mBq/g, lying in the range of the reported results in the areas with similar latitude, except for a few samples. The distribution of ²³⁹,²⁴⁰Pu in this region is controlled by the deposition of plutonium in the atmosphere and its preservation in the soil, which were affects by multi-factors such as topography, climate, utilization of the land and vegetation coverage. The analytical results could be used as the baseline data for the assessment of the impact of nuclear activities in the past and the future.
Show more [+] Less [-]PM1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China Full text
2021
Zhao, Suping | Yin, Daiying | Yu, Ye | Kang, Shichang | Ren, Xiaolin | Zhang, Jing | Zou, Yong | Qin, Dahe
Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM₁ (airborne particulate matter with an aerodynamic diameter less than 1 μm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH₄⁺, NO₃⁻ and SO₄²⁻) dominate PM₁ pollution, contributing more than 85% to PM₁ mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K⁺ and Cl⁻ are 19.69 μg m⁻³, 8.00 μg m⁻³, 1.32 μg m⁻³, 1.16 μg m⁻³ at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m⁻¹ at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m⁻¹). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBᵣC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m² g⁻¹ with mean value of 3.5 ± 0.8 m² g⁻¹, which is about three times higher than the urban site.
Show more [+] Less [-]Exposure to methylmercury and inorganic mercury in the food does not lead to trophic magnification in the sea star Asterias rubens Full text
2021
Bjerregaard, Poul | Møller, Lise Marianne
Methylmercury accumulated at the top of aquatic food chains constitutes a toxicological risk to humans and other top predators. Biomagnification of methylmercury takes place among vertebrates at the higher trophic levels, but this process is less elucidated in benthic invertebrates at the lower trophic levels. Therefore, we investigated the accumulation from food and elimination of methylmercury and inorganic mercury in the benthic sea star Asterias rubens (L.) – a representative of trophic level ~3 - in laboratory experiments. Sea stars fed over 49 days with contaminated mussels (Mytilus edulis) accumulate methylmercury and inorganic mercury to the highest concentrations in the digestive glands, the pyloric caeca, less in stomach, gonad, tube feet, aboral body wall and not to detectable levels in the coelomic fluid. Concerning whole body contents, steady states were reached for both methylmercury and inorganic mercury during the 7-week feeding period and the sea stars reached approximately ½ and ¼ of the concentrations in the mussel food for the two mercury forms, respectively. Half-lives for the elimination of the two mercury forms varied between 45 and 173 days in a 140-d elimination period following the feeding period; inorganic mercury was eliminated faster than methylmercury. Examination of total mercury concentrations in field-collected sea stars confirmed this lack of trophic magnification in relation to the major food items, soft parts of molluscs. We suggest that mercury is not trophically magnified in sea stars 1) because they eliminate methylmercury faster than larger fish and decapod crustaceans and 2) maybe more importantly, because inorganic mercury with its faster elimination constitutes a larger fraction of the total mercury in the food at the lower trophic levels - as opposed to methylmercury which dominates at the higher trophic levels.
Show more [+] Less [-]