Refine search
Results 1051-1060 of 7,292
Uneven development of the lead industry leads to regional differences in blood lead levels of children Full text
2022
Liu, Yang | Xu, Chengdong | Liu, Feiyan | Xiao, Gexin | Zhou, Shaoqi | Huang, Liming | Lin, Ni | Li, Jianyi | Chen, Dong | Fu, Qi | Wang, Huijun | Du, Qingfeng
Children's exposure to lead is a global health problem, especially in low- and middle-income countries. However, research on the relationship between children's blood lead levels (BLLs) and the development of the lead industry is still limited. This study examined whether children's BLLs were associated with the development of lead industry in different regions. Using survey data on the BLLs of children living in 250 prefectures in China with corresponding data on their economic factors and lead industries, we explored the regional variation of children's BLLs using statistical methods. The results show that the level of economic development in leaded areas was associated with inequity in children's BLLs and met the environmental Kuznets hypothesis. In areas without lead industries, there was little correlation between the level of economic development and the BLLs of children and thus the environmental Kuznets hypothesis was not supported. Lead mines, lead smelting and chemical companies are major sources of blood lead in children living in leaded areas. This study demonstrated the success of control policies for lead-acid battery manufacturers in promoting the prevention and control of childhood lead poisoning in China. China should consciously support the improvement of children's BLLs in undeveloped areas with lead industries through national financing and policies to avoid the continuous effects of the regional inequality problem of high children's BLLs.
Show more [+] Less [-]PCDD/Fs and heavy metals in the vicinity of landfill used for MSWI fly ash disposal: Pollutant distribution and environmental impact assessment Full text
2022
Lin, Xiaoqing | Ma, Yunfeng | Chen, Tong | Wang, Lei | Takaoka, Masaki | Pan, Shuping | Zhang, Hao | Wu, Angjian | Li, Xiaodong | Yan, Jianhua
This study focused on the syngenetic control of polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) and heavy metals by field stabilization/solidification (S/S) treatment for municipal solid waste incineration fly ash (MSWIFA) and multi-step leachate treatment. Modified European Community Bureau of Reference (BCR) speciation analysis and risk assessment code (RAC) revealed the medium environment risk of Cd and Mn, indicating the necessity of S/S treatment for MSWIFA. S/S treatment significantly declined the mass/toxic concentrations of PCDD/Fs (i.e., from 7.21 to 4.25 μg/kg; from 0.32 to 0.20 μg I-TEQ/kg) and heavy metals in MSWIFA due to chemical fixation and dilution effect. The S/S mechanism of sodium dimethyldithiocarbamate (SDD) and cement was decreasing heavy metals in the mild acid-soluble fraction to reduce their mobility and bioavailability. Oxidation treatment of leachate reduced the PCDD/F concentration from 49.10 to 28.71 pg/L (i.e., from 1.60 to 0.98 pg I-TEQ/L) by suspension absorption or NaClO oxidation decomposition, whereas a so-called “memory effect” phenomena in the subsequent procedures (adsorption, press filtration, flocculating settling, slurry separation, and carbon filtration) increased it back to 38.60 pg/L (1.66 pg I-TEQ/L). Moreover, the multi-step leachate treatment also effectively reduced the concentrations of heavy metals to 1–4 orders of magnitude lower than the national emission standards. Furthermore, the PCDD/Fs and heavy metals in other multiple media (soil, landfill leachate, groundwater, and river water) and their spatial distribution characteristics site were also investigated. No evidence showed any influence of the landfill on the surrounding liquid media. The slightly higher concentration of PCDD/Fs in the soil samples was ascribed to other waste management processes (transportation and unloading) or other local source (hazardous incineration plant). Therefore, proper management of landfills and leachate has a negligible effect on the surrounding environment.
Show more [+] Less [-]PPARγ/LXRα axis mediated phenotypic plasticity of lung fibroblasts in silica-induced experimental silicosis Full text
2022
Qi, Yuanmeng | Zhang, Haichen | Fan, Hui | Wang, Xinyu | Zhao, Ahui | Tian, Yangyang | Yang, Guo | Li, Chao | Wei, Jingjing | Yao, Wu | Hao, Changfu
Silicosis is a disease mainly caused by pulmonary interstitial fibrosis caused by long-term inhalation of dust with excessively high content of free SiO₂. Transdifferentiation of lung fibroblasts into myofibroblasts is an important cellular basis for silicosis, but the key transcription factors (TFs) involved in this process are still unclear. In order to explore the biological regulation of transcription factor PPARγ/LXRα in silica-induced pulmonary fibrosis, this study explored the molecular mechanism of PPARγ/LXRα involved in regulating transcription factors related to SiO₂-induced lung injury at the cellular level and in animal models. ChIP-qPCR detected that PPARγ directly regulated the transcriptional activity of the LXRα gene promoter, while the PPARγ agonist RSG increased the expression of LXRα. In addition, we demonstrated in the cell model that upregulation of LXRα can inhibit silica-mediated fibroblast transdifferentiation, accompanied by an increase in the expression of SREBF1, PLTP and ABCA1. The results of LXRα silencing experiment matched those of overexpression experiment. These studies explored the role of LXRα in plasticity and phenotypic transformation between lung fibroblasts and myofibroblasts. Therefore, inhibiting or reversing the transdifferentiation of lung fibroblasts to myofibroblasts by intervening PPARγ/LXRα may provide a new therapeutic target for the treatment of silicosis.
Show more [+] Less [-]Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche Full text
2022
Wu. Xinhui, | Ciminieri, Chiara | Bos, I. Sophie T. | Woest, Manon E. | D'Ambrosi, Angela | Wardenaar, René | Spierings, Diana C.J. | Königshoff, Melanie | Schmidt, Martina | Kistemaker, Loes E.M. | Gosens, Reinoud
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Show more [+] Less [-]Chromium in plant growth and development: Toxicity, tolerance and hormesis Full text
2022
López-Bucio, Jesús Salvador | Ravelo-Ortega, Gustavo | López-Bucio, José
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
Show more [+] Less [-]Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks Full text
2022
Qi, Qian | Hu, Caixia | Lin, Jiahui | Wang, Xuehua | Tang, Caixian | Dai, Zhongmin | Xu, Jianming
Soil contamination with multiple heavy metals poses threats to human health and ecosystem functioning. Using the Nemerow pollution index, which considers the effects of multiple heavy metals, we compared the diversity and composition of bacteria, fungi and protists and their potential interactions in response to a multi-metal contamination gradient. Multi-metal contamination significantly altered the community composition of bacteria, fungi and protists, and the degree of alteration increased with increasing severity of contamination. The alpha-diversity of bacteria, fungi and protists significantly decreased with increasing contamination level. The dominant generalists, found in all soil samples, were Gammaproteobacteria, Chloroflexi and Bacillus sp, whereas the dominant specialists were Anaerolineaceae, Entoloma sp. and Sandonidae_X sp. The relative abundances of generalists were positively correlated, whereas those of specialists were negatively correlated, with the Nemerow pollution index. In addition, the complexity of the microbial co-occurrence network increased with increasing contamination level. Generalists, rather than specialists, were the keystones in the microbial co-occurrence network and played a crucial role in adaptation to multi-metal contamination through enhanced potential interactions within the entire microbiome. Our results provide insights into the ecological effects of multi-metal contamination on the soil microbiome and will help to develop bio-remediation technologies for contaminated soils.
Show more [+] Less [-]Comparative study of organic contaminants in agricultural soils at the archipelagos of the Macaronesia Full text
2022
Acosta-Dacal, Andrea | Hernández-Marrero, María Eugenia | Rial-Berriel, Cristian | Díaz-Díaz, Ricardo | Del Mar Bernal Suarez, Maria | Zumbado, Manuel | Henríquez-Hernández, Luis Alberto | Boada, Luis D. | Luzardo, Octavio P.
The occurrence of organic pollutants in soil is a major environmental concern. These compounds can reach the soil in different ways. Point sources, related to pesticides that are used intentionally, can be applied directly to the soil, or reach the soil indirectly due to application to the aerial parts of crops. On the other hand, non-point sources, which reach soils collaterally during irrigation and/or fertilization, or due to the proximity of plots to industrialized urban centers. Long-range transport of global organic pollutants must also be taken into account. In this study, 218 pesticides, 49 persistent organic pollutants, 37 pharmaceutical active compounds and 6 anticoagulant rodenticides were analyzed in 139 agricultural soil samples collected between 2018 and 2020 in the Macaronesia. This region comprised four inhabited archipelagos (Azores, Canary Islands, Cape Verde, and Madeira) for which agriculture is an important and traditional economic activity. To our knowledge, this is the first study on the levels of organic compound contamination of agricultural soils of the Macaronesia. As expected, the most frequently detected compounds were pesticides, mainly fungicides and insecticides. The Canary Islands presented the highest number of residues, with particularly high concentrations of DDT metabolites (p,p’ DDE: 149.5 ± 473.4 ng g⁻¹; p,p’ DDD: 16.6 ± 35.6 ng g⁻¹) and of the recently used pesticide fenbutatin oxide (302.1 ± 589.7 ng g⁻¹). Cape Verde was the archipelago with the least contaminated soils. Very few pharmaceutical active compounds have been detected in all archipelagos (eprinomectin, fenbendazole, oxfendazole and sulfadiazine). These results highlight the need to promote soil monitoring programs and to establish maximum residue limits in soils, which currently do not exist at either continental or local level.
Show more [+] Less [-]Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata Full text
2022
Xu, Min | Lin, Yang | da Silva, Evandro B. | Cui, Qinghong | Gao, Peng | Wu, Jun | Ma, Lena Q.
Arsenic (As) and copper (Cu) are common co-contaminates in soils. However, their interactive effects on their accumulation and distribution in As-hyperaccumulator Pteris vittata are poorly understood. A hydroponic experiment was conducted with As being 0, 5, or 50 μM and Cu being 0.32, 3.2, or 32 μM to evaluate their phytotoxicity, accumulation, and distribution in P. vittata. In addition, As and Cu uptake kinetics were examined using the Michaelis-Menten kinetics model. Total As and Cu concentrations in P. vittata were up to 487 and 1355 mg kg⁻¹. About 39–81% of the As was in the fronds compared to 0.6–18% for Cu. At 50 μM As, increasing Cu concentration from 0.32 to 32 μM increased root As while decreasing frond As concentrations, with the translocation factor (ratio of As in fronds to roots) being reduced from 4.0 to 0.31. In contrast, As did not affect Cu accumulation in P. vittata. Michaelis constant Kₘ value for As was higher than that of Cu (6.49–24.9 vs. 0.43–3.36), consistent with higher Cu uptake than As. Besides, Cu reduced root K but increased P levels in the roots, whereas As increased the K and P concentrations in the fronds. Our results suggest that P. vittata accumulated more Cu than As in the roots, contributing to its low As translocation. As such, high levels of Cu are likely to reduce As uptake by P. vittata during phytoremediation of As-contaminated sites.
Show more [+] Less [-]Physical activity alleviates negative effects of bedroom light pollution on blood pressure and hypertension in Chinese young adults Full text
2022
Xu, Yu-xiang | Zhou, Yi | Huang, Yan | Yu, Yang | Li, Jing-ya | Huang, Wen-juan | Wan, Yu-hui | Tao, Fang-biao | Sun, Ying
Excessive exposure to light at night (LAN) has become a serious public health concern. However, little is known about the impact of indoor LAN exposure on blood pressure, particularly among young adults. We aimed to investigate the effects of bedroom individual-level LAN exposure in real-world environment on blood pressure and hypertension among vulnerable young adults, and to evaluate the possible buffering effect of physical activity. In this cross-sectional study, a total of 400 healthy young adults aged 16–22 years were included. Bedroom LAN exposure was recorded at 1-min intervals for two consecutive nights using a TES-1339 R illuminance meter. Blood pressure was measured three times (8–11 a.m. in the physical examination day) in the seated position using an Omron HEM-7121 digital sphygmomanometer. A wrist-worn triaxial accelerometer (ActiGraph GT3X-BT) was used to assess physical activity for seven consecutive days. Each 1 lx increase of bedroom LAN intensity was associated with 0.55 mmHg-increase in SBP (95% CI: 0.15, 0.95), 0.30 mmHg-increase in DBP (95% CI: 0.06, 0.54), and 0.38 mmHg-increase in MAP (95% CI: 0.12, 0.65). Higher levels of LAN exposure were associated with increased risk of hypertension (LAN ≥ 3lx vs. LAN < 3lx: OR = 3.30, 95%CI = 1.19–9.19; LAN ≥ 5lx vs. LAN < 5lx: OR = 3.87, 95%CI = 1.37–10.98). However, these detrimental effects of bedroom LAN exposure on blood pressure and hypertension were not observed among young adults with high MVPA (≥2 h/day) level. MVPA can alleviate negative effects of bedroom LAN exposure on blood pressure and hypertension. Maintaining bedroom settings darkness at night may be an important strategy for reducing the risk of hypertension. Furthermore, for individuals living with high levels of indoor LAN exposure, regular physical activity may be a good option for preventing cardiovascular disease and hypertension.
Show more [+] Less [-]Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: Efficiency and mechanisms Full text
2022
Li, Miaomiao | Yao, Jun | Sunahara, Geoffrey | Hawari, Jalal | Duran, Robert | Liu, Jianli | Liu, Bang | Cao, Ying | Pang, Wancheng | Li, Hao | Li, Yangquan | Ruan, Zhiyong
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe²⁺ greatly increased As³⁺ immobilization compared to treatment without Fe²⁺, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As³⁺ immobilizing activity was related to the formation of arsenic sulfides (AsS, As₄S₄, and As₂S₃) and sorption/co-precipitation of pyrite (FeS₂). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As³⁺ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220–1181 mg As/kg or 63–222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
Show more [+] Less [-]