Refine search
Results 1061-1070 of 1,545
Water Quality Characterization in the Northern Florida Everglades Full text
2012
Entry, James A.
The Loxahatchee National Wildlife Refuge (Refuge) developed as a system with waters low in nutrients. Today, the Refuge wetlands are impacted by inflows containing elevated nutrient concentrations originating from agricultural sources flowing into canals surrounding the west side and from urban and horticultural areas flowing into canals surrounding the eastern side of the Refuge. We analyzed water quality sampled at 40 sites divided into eastern and western areas and four zones in the Refuge. We defined four zones as the canals surrounding the Refuge marsh, the perimeter zone, the transition zone, and the interior zone. The canal receiving agricultural inflows had greater alkalinity and conductivity (SpC), Si and SO4 but lower turbidity and total suspended solids than the canal receiving urban and horticultural inflows. Alkalinity, total dissolved solids (TDS), SpC, Ca, Cl, and SO4 concentrations were greater in the perimeter than in transition and interior zones. Alkalinity and SpC values and SO4 concentrations were greater in the transition than in interior zone. Alkalinity, SpC, and TDS values and Ca, SO4, and Cl concentrations correlated in negative curvilinear relationships with distance from the canal (r 2 = 0.78, 0.70, 0.61, 0.78, 0.64, 0.57, respectively). Analysis of multiple water quality parameters may reveal the complexity of interactions that might be overlooked in a simple single parameter analysis. These data show an impact of canal water containing high nutrient concentrations on water quality flowing from the canal towards the Refuge interior.
Show more [+] Less [-]Novel Water-Soluble Calix[4,6]arene Appended Magnetic Nanoparticles for the Removal of the Carcinogenic Aromatic Amines Full text
2012
Aksoy, Tuba | Erdemir, Serkan | Yildiz, H Bekir | Yılmaz, Mustafa
This article describes the synthesis of p-sulfonated calix[4,6]arene derivatives and firstly their immobilization onto magnetic nanoparticles for removal of some carcinogenic aromatic amines. The prepared new water-soluble calix[4,6]arene appended magnetic nanoparticles (p-C[4]-MN and p-C[6]-MN) were characterized by a combination of Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analyses. The separation and quantification of aromatic amines were performed by high performance liquid chromatography. In batch sorption experiments, the compounds 7 and 8 were found to be effective sorbent for aromatic amines. It was observed that the percentage of aromatic amine removal was 44–97 % for compound 7 and 63–97 % for 8 when the pH of the aromatic amine solution was in the range of 3.0–8.5. The sorption of aromatic amines by p-sulfonated calix[n]arenes-based magnetic nanoparticles shows that sulfonic acid groups play a major role for the formation of hydrogen bonds and electrostatic interactions.
Show more [+] Less [-]Development of an Environmentally Friendly Adsorbent for the Removal of Toxic Heavy Metals from Aqueous Solution Full text
2012
Choi, Jae-Woo | Chung, Seung-Gun | Hong, Seok-Won | Kim, Dong-Ju | Yi, Sang-hyŏp
An effective adsorbent for the removal of heavy metals was manufactured by immobilization of jujube powder. The adsorptions of Cd, Zn and Cu from aqueous solutions by jujube complex beads (Type 1 and Type 2) were studied in a batch adsorption system. The adsorption data were fitted well with the Langmuir isotherm models. The adsorption capacities (β) for Cd, Zn and Cu were 4.23, 2.93 and 3.64 mg/g in Type 1 and 1.24, 0.70 and 1.35 mg/g in Type 2 beads. The removal efficiencies of the Type 2 beads, with a larger unit surface area, were lower than those of the Type 1 due to part of the casein or cyclic AMP being destroyed during the drying process of the Type 1. These values for Type 1 beads were higher than those of all other adsorbents for each heavy metal. A comparison of the kinetic models on the overall adsorption rate showed that the adsorption system was best described by pseudo-first-order kinetics. The removal efficiencies of Cd, Zn and Cu exhibited similar tendencies to those observed in the equilibrium tests. This indicates that the jujube complex beads developed in this study can be used as promising adsorbents for the removal of heavy metals from wastewater.
Show more [+] Less [-]The Influence of Cadmium Stress on the Content of Mineral Nutrients and Metal-Binding Proteins in Arabidopsis halleri Full text
2012
Przedpełska-Wąsowicz, Ewa | Polatajko, Aleksandra | Wierzbicka, Małgorzata
We investigated the influence of cadmium stress on zinc hyperaccumulation, mineral nutrient uptake, and the content of metal-binding proteins in Arabidopsis halleri. The experiments were carried out using plants subjected to long-term cadmium exposure (40 days) in the concentrations of 45 and 225 μM Cd²⁺. Inductively coupled plasma-mass spectrometry, size exclusion chromatography coupled with plasma-mass spectrometry, and laser ablation inductively coupled plasma-mass spectrometry used for ablation of polyacylamide gels were employed to assess the content of investigated elements in plants as well as to identify metal-binding proteins. We found that A. halleri is able to translocate cadmium to the aerial parts in high amounts (translocation index >1). We showed that Zn content in plants decreased significantly with the increase of cadmium content in the growth medium. Different positive and negative correlations between Cd content and mineral nutrients were evidenced by our study. We identified more than ten low-molecular-weight (<100 kDa) Cd-binding proteins in Cd-treated plants. These proteins are unlikely to be phytochelatins or metallothioneins. We hypothesize that low-molecular-weight Cd-binding proteins can be involved in cadmium resistance in A. halleri.
Show more [+] Less [-]Use of Biosolids for Phytocapping of Landfill Soil Full text
2012
Lamb, Dane T. | Heading, Stephen | Bolan, Nanthi | Naidu, R.
Conventional clay capping for post-closure management of landfill commonly cracks and deteriorates over time. As a consequence, water ingress into waste increases as a function of time, potentially causing a range of environmental issues. An alternative approach is known as phytocapping, which utilizes select plant species to control cap stability and moisture percolation. In this study, growth of Arundo donax L. (giant reed), Brassica juncea (L.) Czern. (Indian mustard), and Helianthus annuus L. (sunflower) on a landfill site was studied with different biosolid amendment rates (0, 25, and 50 Mg ha−1). Cultivation of the landfill cap and amendment with biosolids significantly improved the characteristics of the soil. Growth of each plant species increased due to biosolid addition. Giant reed produced the largest biomass in the 50 Mg ha−1 biosolid amendment rate (38 Mg ha−1 dry weight). The high pH and clay content of landfill cap soil, and the low metal concentrations of the biosolid resulted in low heavy metal (copper, zinc, cadmium, and lead) accumulation in leaves of most treatments. The improvement in growth and limited uptake of metal contaminants to plant shoots indicated that biosolid application to landfill clay caps improves the application of phytocapping of old landfill sites.
Show more [+] Less [-]Atmospheric Deposition of Nitrogen to a Caribbean Coastal Zone (Cayo Coco, Cuba): Temporal Trends and Relative Importance as a Nitrogen Source Full text
2012
Nitrogen (N) deposition to the ocean is thought to be increasing worldwide, but the amount of coastal and open ocean measurements is very limited. In this paper, we assess N deposition in the coastal zone of Cayo Coco, in central Cuba, during a multi-annual period (2005–2007). Wet and dry N depositions were estimated based on the NH 4 + and NO x – concentrations in the rain. Cold fronts and troughs, coming from the west, contributed most to rain (41%) and to N deposition, followed by tropical waves and storms coming from the east, which caused 31% of the rain. Average concentrations of NH 4 + and NO x – in the rain were 8.8 and 8.3Â μM. NO x – presented a clearly decreasing trend (0.26Â μM per month), decreasing by half during 2005–2007. Total N deposition averaged 3.23Â kg N ha−1Â year−1, similar to that found in Virgin Islands and Puerto Rico, but lower than previously measured in Cuba and in nearby areas of the USA and than model predictions for the oceanic region around Cuba. These low values and the decreasing trend found are attributed to drastic reduction of fossil fuel and fertilizer use in Cuba since 1990. Because land input has decreased even more drastically, deposition seems to be nowadays the most important N source to the coastal zone of Cayo Coco. The δ15N range of seagrass (Thalassia testudinum) and macroalgae (Penicillus dumetosus) in the area (−1.83â° to 3.02â° and +1.02â° to +4.17â°, respectively) sustain that atmospheric sources (deposition and N2 fixation) comprise 70–90% of the N budget.
Show more [+] Less [-]Activated Sludge Acclimation for Hydrophobic VOC Removal in a Two-Phase Partitioning Reactor Full text
2012
Darracq, Guillaume | Couvert, Annabelle | Couriol, Catherine | Dumont, Eric | Amrane, Abdeltif | Le Cloirec, Pierre
The effect of activated sludge acclimation on the biodegradation of toluene and dimethyldisulphide (DMDS) in the presence of a non-aqueous phase liquid, polydimethylsiloxane (PDMS), in a two-phase partitioning bioreactor was characterized. The influence of the presence of PDMS, at a ratio of 25% (v/v), and acclimation of activated sludge on two hydrophobic VOC biodegradation was studied. Activated sludge were acclimated to each VOC and in the presence of the non-aqueous phase liquid, namely in the emulsion of PDMS in water. Using acclimated cells, 97.9% and 108.7% improvement of the mean biodegradation rates were recorded for toluene and DMDS, respectively, if compared to the values recorded in the absence of acclimation. While and in agreement with the lower solubility in water of DMDS if compared to toluene, a most significant effect of PDMS addition on the rate of DMDS removal was recorded, 87.0% and 153.6% for toluene and DMDS, respectively. In addition and if both biomass acclimation and PDMS addition were considered, overall improvements of the removal rates were 204% and 338% for toluene and DMDS.
Show more [+] Less [-]Degradation of Leather Dye Using CeO2–SnO2 Nanocomposite as Photocatalyst Under Sunlight Full text
2012
Foletto, Edson Luiz | Battiston, Suellen | Collazzo, Gabriela Carvalho | Bassaco, Mariana Moro | Mazutti, Marcio Antonio
Nanocomposite of CeO₂–SnO₂ containing different CeO₂ contents was prepared by coprecipitation process. The material obtained was characterized by X-ray diffraction and N₂ adsorption–desorption isotherms. Its photocatalytic activity was tested in the degradation of azo dye of leather, Direct Black 38, in aqueous solution under sunlight. The photocatalytic activity of the coupled CeO₂–SnO₂ oxide ranged depending on the CeO₂ contents. The optimum amount of CeO₂ for the synthesis of CeO₂–SnO₂ was 7 wt.% since the nanoparticles showed high photocatalytic activity in the degradation of the dye, similar to that of the TiO₂–P25 photocatalyst. The kinetics of photocatalytic degradation and total organic carbon removal under sunlight were found to follow a first-order rate law. The results indicated that CeO₂–SnO₂ can be used for the removal of dyes from wastewater.
Show more [+] Less [-]The Roles of Diethylenetriamine Pentaacetate (DTPA) and Ethylenediamine Disuccinate (EDDS) in Remediation of Selenium from Contaminated Soil by Brussels Sprouts (Brassica oleracea var. gemmifera) Full text
2012
Esringü, Aslıhan | Turan, Metin
The objective of this study was to investigate the effects of adding different rates of diethylenetriamine pentaacetate (DTPA) at different concentrations (0, 0.5, 1, and 5 mmol kg−1) and ethylenediamine disuccinate (EDDS) at 0, 5, 7.5, and 10 mmol kg−1 on the capacity of Brussels sprouts plants to take up Se from soils contaminated with 0, 5, 10, and 15 mg kg−1 NaSeO4, under a greenhouse conditions. Results indicated that the application of DTPA and EDDS to Se-contaminated soils significantly affect plant Se concentration, Se uptake, and dry matter yield of plants. Se concentration in the plant leaves, stems, and roots increased with increase in DTPA and EDDS application doses, but total Se uptake increased from 0 to 1.0 and 7.5 mmol kg−1 DTPA and EDDS application doses, respectively, and decreased after those levels due to toxic Se concentration for plant. Most plant available fractions and the carbonate, metal oxide, and organic matter-bound fractions increased linearly with Se application. At all DTPA and EDDS application rates, the Se concentrations in the leaves were about two to three times higher than those in the roots and about three to four times higher than those in the stems. This study suggests that the above-ground organs like leaf and shoots of Brussels sprouts can effectively be used in the removal of Se from soils contaminated with Se. Under the conditions in this experiment, Brussels sprouts were capable of removing 0.9–1.8 mg Se pot−1 when harvested at maturity without any chelating agent take into consideration one growing season per year. Based on the data of present experiment, it would be necessary to approximately 57–67 growing seasons without EDDS and EDTA to remove all total Se from polluted soil. Selenium removal can be further increased 12- to 20-fold with 7.5 mmol kg−1 EDDS and 1.0 mmol kg−1 DTPA application, respectively.
Show more [+] Less [-]Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill Full text
2012
Horel, Agota | Mortazavi, Behzad | Sobecky, Patricia A.
Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40–70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65 × 105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49 × 103 to 3.87 × 104, while for total hydrocarbon degraders, it ranged between 5.62 × 103 and 1.14 × 105 of cells/g dw sediment. Pore water nutrient concentrations (NH 4 + , NO 3 − , NO 2 − , and PO 4 3− ) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4 ± 52.4 and 141.9 ± 57.5 mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.
Show more [+] Less [-]