Refine search
Results 1071-1080 of 6,473
Micro-scale particle simulation and traffic-related particle exposure assessment in an Asian residential community
2020
Ling, Hong | Candice Lung, Shih-Chun | Uhrner, Ulrich
Conducting studies on sharp particulate matter (PM) gradients in Asian residential communities is difficult due to their complex building arrangements and various emission sources, particularly road traffic. In this study, a synthetic methodology, combining numerical simulations and minor field observations, was set up to investigate the dispersion of traffic-related PM in a typical Asian residential community and its contribution to PM exposure. A Lagrangian particle model (GRAL) was applied to estimate the spatiotemporal variation of the traffic-related PM increments within the community. A detailed topography dataset with 5 m horizontal resolution was used to simulate a micro-scale flow field. The model performance was comprehensively validated using both in-situ and mobile observations. The coefficient of determination (R²) of the simulated vs. observed PM₂.₅ reached 0.81 by an artery road, and 0.85 in alleys without significant road traffic. The maximum increments of kerbside PM exposure concentration contributed by road traffic during rush hour were found to be 38% (PM₁₀) and 40% (PM₂.₅). This synthetic method was used to assess the impact of synoptic wind and canyon orientation on residents’ PM₂.₅ exposure related to traffic exhaust. Perfect exponential decay curves of traffic-related PM₂.₅ were found within canyons. The decrease of road-traffic PM₂.₅ on five different floor levels, compared with that on kerbside levels, ranged between 42% and 100%. The results demonstrated that in complex Asian communities, Lagrangian particle models such as GRAL can simulate the spatial distribution of PM₁₀ and PM₂.₅ and assess the residents’ outdoor exposure.
Show more [+] Less [-]The pigmentation interference of bisphenol F and bisphenol A
2020
Mu, Xiyan | Liu, Jia | Yuan, Lilai | Huang, Ying | Qian, Le | Wang, Chengju
Bisphenol A (BPA) and bisphenol F (BPF) are widely distributed in the environment and daily consumptions, leading to exposure toward human and environmental animals. The potential risk of bisphenol analogs on pigment and skin health is not well documented. In this study, we found that 0.05 mg/L BPF (tolerated daily intake (TDI) value of BPA) affected the particle size and color density of zebrafish melanin. While BPA caused less depigmentation effect toward zebrafish with effective concentration of 5.0 mg/L. The downregulation of melanin synthases induced by BPF is associated with the reduction in melanin. Molecular dynamics indicated that both BPF and BPA could act as ligands of zebrafish and human Tyr family proteins; however, these compounds have completely different energetics and spatial steric effects, potentially explaining their varying depigmentation effects. Additionally, an in vitro assay using A375 melanoma cells demonstrated that the inhibitory effect of BPF on human melanin production was primarily attributed to Tyr inhibition. These findings provide an important basis for understanding the molecular mechanisms of BPF and BPA in melanin inhibition, and the results reflect the skin pigmentation interference risk of these compounds, which are ubiquitous in everyday personal products.
Show more [+] Less [-]The mediation effect of maternal glucose on the association between ambient air pollution and birth weight in Foshan, China
2020
Yang, Yin | Lin, Qingmei | Liang, Ying | Ruan, Zengliang | Qian, Zhengmin (Min) | Syberg, Kevin M. | Howard, Steven W. | Wang, Changke | Acharya, Bipin | Zhang, Qihao | Ge, Haibo | Wu, Xueli | Li, Kaihua | Guo, Xiaoling | Lin, Hualiang
Maternal blood glucose level is associated with fetal growth, therefore, its role in the associations between air pollution and birth weight deserves investigation. We examined the mediation effect of maternal blood glucose on the associations between maternal air pollution exposure and birth weight. A total of 10,904 pregnant women in Foshan, China during 2015–2019 were recruited. Oral glucose tolerance test (OGTT) was administered to each participant after late trimester 2. Air pollution data at the monitoring stations in residential districts was used to estimate exposures of each participant during trimester 1 and trimester 2. Mixed-effects linear models were used to estimate the associations between air pollution and birth weight. After controlling for ten covariates, the direct effect of PM₂.₅ and SO₂ (each 10 μg/m³ increment) on birth weight was −15.7 g (95% CI: −29.4, −4.8 g) and −83.6 g (95% CI: −134.8, −33.0 g) during trimester 1. The indirect effect of PM₂.₅ and SO₂ (each 10 μg/m³ increment) on birth weight by increasing maternal fasting glucose level was 6.6 g (95% CI: 4.6, 9.1 g) and 22.0 g (95% CI: 4.1, 44.0 g) during trimester 1. Our findings suggest that air pollution might affect the birth weight through direct and indirect pathway, and the indirect effect might be mediated by maternal blood glucose.
Show more [+] Less [-]High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces
2020
Zhao, Huiru | Sun, Ruonan | Yu, Pingfeng | Alvarez, Pedro J.J.
This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10⁹, 10⁸, 10⁹, and 10¹⁰ copies/g dry feces for tetW, blaTEM, sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10⁷ copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks.
Show more [+] Less [-]COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources
2020
Hendryx, Michael | Luo, Juhua
The novel coronavirus disease (COVID-19) is primarily respiratory in nature, and as such, there is interest in examining whether air pollution might contribute to disease susceptibility or outcome. We merged data on COVID-19 cumulative prevalence and fatality rates as of May 31, 2020 with 2014–2019 pollution data from the US Environmental Protection Agency Environmental Justice Screen (EJSCREEN), with control for state testing rates, population density, and population covariate data from the County Health Rankings. Pollution data included three types of air emission concentrations (particulate matter<2.5 μm (PM2.5), ozone and diesel particulate matter (DPM)), and four pollution source variables (proximity to traffic, National Priority List sites, Risk Management Plan (RMP) sites, and hazardous waste treatment, storage and disposal facilities (TSDFs)). Results of mixed model linear multiple regression analyses indicated that, controlling for covariates, COVID-19 prevalence and fatality rates were significantly associated with greater DPM. Proximity to TSDFs was associated to greater fatality rates, and proximity to RMPs was associated with greater prevalence rates. Results are consistent with previous research indicating that air pollution increases susceptibility to respiratory viral pathogens. Results should be interpreted cautiously given the ecological design, the time lag between exposure and outcome, and the uncertainties in measuring COVID-19 prevalence. Areas with worse prior air quality, especially higher concentrations of diesel exhaust, may be at greater COVID-19 risk, although further studies are needed to confirm these relationships.
Show more [+] Less [-]Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO2 vents
2020
Kumar, Amit | Buia, Maria Cristina | Palumbo, Anna | Mohany, Mohamed | Wadaan, Mohammed A.M. | Hozzein, Wael N. | Beemster, Gerrit T.S. | AbdElgawad, Hamada
We utilized volcanic CO₂ vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO₂ on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Show more [+] Less [-]Female oxidative status in relation to calcium availability, metal pollution and offspring development in a wild passerine
2020
Espín, Silvia | Sánchez-Virosta, Pablo | Ruiz, Sandra | Eeva, Tapio
Both Ca deficiency and metal exposure may affect physiological and nutritional condition of breeding females altering their ability to deposit essential resources (e.g. Ca, antioxidants) into the eggs. This effect of the maternal investment into egg quality is not strictly limited to the embryonic period, but may persist after hatching, since nutrient levels in yolks can compromise nestling antioxidant status, growth and fledging success. The goal of this study was to investigate how metal pollution and Ca availability during the breeding season affect oxidative stress biomarkers and plasma biochemistry in adult female pied flycatchers (Ficedula hypoleuca). In addition, we aim to evaluate how maternal antioxidant status and body condition relate to breeding parameters and offspring oxidative balance. Females breeding in a metal-polluted area in SW Finland showed higher metal concentrations compared to the control area, although current levels were below the toxic level able to affect female physiology. In addition, Ca availability was not constraining female oxidative status and general health in the study area. Interestingly, our results suggested that antioxidant response to metals was better when Ca concentrations were high enough to cover the physiological Ca requirements in breeding females. There seems to be a subtle balance between the concentrations of Ca in the organism and the tolerance to metal-related effects that requires further research. This study supports that offspring oxidative balance and nestling development are affected by maternal body condition and antioxidant status.
Show more [+] Less [-]Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice
2020
Wu, Yun | Yang, Lei | Gong, Hua | Dang, Fei | Zhou, Dong-Mei
Interaction between silver nanoparticles (AgNPs) and iron plaque, which forms at the root surface of wetland plants under waterlogging conditions, is a critical process that controls the bioavailability of AgNPs. In this study, we comparatively evaluated how and to what extent iron plaque affected silver uptake sourced from metallic (Ag⁰NPs) and sulfidized (Ag₂S-NPs) silver nanoparticles under hydroponic conditions. After the formation of iron plaque at the root surface upon exposure to Fe²⁺ at 0–100 μg mL⁻¹, rice (Oryza sativa L.) seedlings were transferred to AgNP suspensions. Silver uptake depended on the amount of iron plaque and AgNP species (Ag⁰NPs vs. Ag₂S-NPs): Ag₂S-NP exposure had lower or comparable Ag uptake to that of Ag⁰NP exposure at low levels of Fe²⁺ (0–80 μg mL⁻¹), but significantly higher Ag uptake at 100 μg Fe²⁺ mL⁻¹. Such contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs were attributed to their influences on AgNP dissolution. However, the translocation factors (TFs) and particle size distribution of NPs in planta (as determined by single-particle inductively coupled plasma-mass spectrometry analysis) were not affected by the amount of iron plaque. These results reveal contrasting effects of iron plaque on the bioavailability of Ag⁰NPs and Ag₂S-NPs, and raise concerns about the exposure of wetland plants to Ag₂S-NPs in Fe-rich environments, where high Fe levels may facilitate Ag₂S-NP bioavailability.
Show more [+] Less [-]Landfill leachate treatment through the combination of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO and membrane filtration processes
2020
Bai, Fuliang | Tian, Hui | Ma, Jun
This study developed a process of genetically engineered bacteria Rhodococcus erythropolis expressing Nirs and AMO combined with membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) membrane (pRho-NA-MNR) for advanced treatment of landfill leachate. Results demonstrated that pRho-NA-MNR presented higher removal rate of chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia nitrogen (N–NH₄), total nitrogen (TN) and total organic carbon (TOC) than activated sludge (AS-MNR) system. Administration of pRho-NA increased nitrification by converting N–NH₄ to nitrite (N–NO₂) and Nitrate (N–NO₃), and promoting denitrification by converting N–NO₂ to nitrogen (N₂) in the landfill leachate treatment, promoted the pH control, increased sludge activity and effluent yield, shortened phase length adaptation under alternating aerobic-anoxic conditions. pRho-NA increased the nitration and denitrifying rate in the aerobic and anaerobic stage in the system by increasing Cyt cd1 and Cyt c expression in the activated sludge. Nitrogen removal by nitrification and denitrification was positively correlated to the concentration of Nirs and AMO expression. Treatment with pRho-NA promoted pollutant removal efficiency of membrane bioreactor, nanofiltration and reverse osmosis membrane processes in landfill leachate. In conclusion, data suggest that pRho-NA-MNR facilitates the formation of granular sludge and enhances comparable removal of nitrogen and organic compounds, indicating the practice of this process should be considered in landfill leachate treatment system.
Show more [+] Less [-]Utilization of domestic wastewater as a water source of Tetradesmusobliquus PF3 for the biological removal of nitric oxide
2020
Ma, Shanshan | Yu, Yanling | Cui, Hao | Li, Jiang | Feng, Yujie
The reduction of nitrogen oxide (DeNOx) from flue gas by microalgae is a promising technology that has attracted increasing attention. Because the water source is a major limitation of microalgae application in the DeNOx from flue gas, we investigated the feasibility of using domestic wastewater (WW) as a water source. As a result, a biomass accumulation rate of 0.27 ± 0.01 mg L⁻¹ d⁻¹ was achieved by Tetradesmusobliquus PF3 cultivated in WW for 8 d, and 30 mg L⁻¹ of nitrate nitrogen was added to the WW to fulfill the nutrient requirements of the microalgae cells. The ammonium (NH₄⁺) nitrogen present in WW exerted inhibitory effects on the removal of nitric oxide (NO), thereby leading to 8% decrease removal efficiency in comparison with that using clean water and nutrients (BG11 medium). However, these inhibitory effects disappeared following the exhaustion of NH₄⁺ by T. obliquus PF3 after 1 d. To overcome the inhibition of NH₄⁺ and to achieve a high NO removal efficiency, a strategy of connecting two reactors in series was presented. The removal efficiency of NO by the two series reactors reached up to 71.2 ± 2.9%, which was significantly higher than that obtained by a single reactor (43.1 ± 3.6%). In addition, 70.9 ± 4.8% of the supplied NO was fixed into microalgae cells in the two reactors, which was 1.75 times higher than that in the single reactor (40.6 ± 5.1%), thereby suggesting that connecting two reactors in series rendered effective recovery of NO from flue gas using WW as a water source. In this study, we provided an economically viable water source for the application of microalgae in the biological DeNOx from flue gases.
Show more [+] Less [-]