Refine search
Results 1081-1090 of 5,149
Spatial distribution and diversity of organohalide-respiring bacteria and their relationships with polybrominated diphenyl ether concentration in Taihu Lake sediments Full text
2018
Chen, Juan | Wang, Pei-Fang | Wang, Chao | Liu, Jia-Jia | Gao, Han | Wang, Xun
It is acknowledged that organohalide-respiring bacteria (OHRB) can degrade polybrominated diphenyl ethers (PBDEs); however, very little is known about the distribution of OHRB or their response to PBDE contamination in natural sediments. We collected sediments from 28 sampling sites in Taihu Lake, China, and investigated the spatial distribution and diversity of OHRB, and the relationships between the PBDE contamination levels and the PBDE removal potential. The abundances of five typical OHRB genera, namely Dehalobacter, Dehalococcoides, Dehalogenimonas, Desulfitobacterium, and Geobacter, ranged from 0.34 × 10⁴ to 19.4 × 10⁷ gene copies g⁻¹ dry sediment, and varied significantly among different areas of Taihu Lake. OHRB were more abundant in sediments from Meiliang and Zhushan Bay, where the PBDE concentrations were higher, and the phylotype diversity of the OHRB belonging to the family Dehalococcoidaceae was lower, than reported for other areas. While the sulfate concentrations explained much of the spatial distribution of OHRB, PBDE concentrations were also a strong influence on the abundance and diversity of OHRB in the sediments. For Dehalococcoides, Dehalogenimonas and Geobacter, the abundance of each genus was positively related to its own potential to remove PBDEs. The dominant OHRB genus, Dehalogenimonas, may contribute most to in situ bioremediation of PBDEs in Taihu Lake.
Show more [+] Less [-]An assessment of polyurethane foam passive samplers for atmospheric metals compared with active samplers Full text
2018
Li, Qilu | Yang, Kong | Li, Jun | Zeng, Xiangying | Yu, Zhiqiang | Zhang, Gan
In this study, we conducted an assessment of polyurethane foam (PUF) passive sampling for metals combining active sampling. Remarkably, we found that the metals collected in the passive samples differed greatly from those collected in active samples. By composition, Cu and Ni accounted for significantly higher proportions in passive samples than in active samples, leading to significantly higher uptake rates of Cu and Ni. In assessing seasonal variation, metals in passive samples had higher concentrations in summer (excluding Heshan), which differed greatly from the pattern of active samples (winter > summer), indicating that the uptake rates of most metals were higher in summer than in winter. Overall, due to the stable passive uptake rates, we considered that PUF passive samplers can be applied to collect atmospheric metals. Additionally, we created a snapshot of the metal pollution in the Pearl River Delta using principal component analysis of PUF samples and their source apportionment.
Show more [+] Less [-]Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics Full text
2018
Kim, Du Yung | Kwon, Jung-Hwan
Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (KDOCw) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain KDOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4′-trichlorobiphenyl (PCB 28), 2,2′,3,5′-tetrachlorobiphenyl (PCB 44), 2,2′,4,5,5′-pentachlorobiphenyl (PCB 101), and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (KDOCsw) were determined using seawater samples from the Korean coast. The log KDOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k2) and their log KDOCsw values were obtained by comparing their k2 with that of PCB 28. The calculated log KDOCsw values were 6.57–7.35 for PCB 44, 6.23–7.44 for PCB 101, and 6.35–7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the KDOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium.
Show more [+] Less [-]Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus) Full text
2018
Yan, Saihong | Wang, Miao | Liang, Xue-fang | Martyniuk, Christopher J. | Zha, Jinmiao | Wang, Zijian
To assess hepatotoxicity and to determine the underlying mechanisms of carbamazepine (CBZ) toxicity in fish, histopathology and the liver proteome were examined after Chinese rare minnow (Gobiocypris rarus) were exposed to 1, 10, and 100 μg/L CBZ for 28 days. Histopathological changes included disruption of spatial structure, pyknotic nuclei, cellular vacuolization and deformation of cell nuclei, in addition to marked swelling of hepatocytes in all treatment groups. Protein analysis revealed that there were gender-specific responses in rare minnow following exposure, and there were 47 proteins in females and 22 proteins in males identified as differentially abundant following CBZ treatments. Pathway analysis revealed that cellular processes affected by CBZ included apoptosis, cell differentiation, cell proliferation, and the respiratory chain, indicating impaired energy homeostasis. Noteworthy was that 15 proteins identified as different in abundance were associated with carcinogenicity. Relative mRNA levels for select transcripts were consistent with the changes of proteins N-myc downstream regulated gene (NDRG), Tropomyosin 2-Beta (TPM2) and annexin A4 (ANXA4). Protein pyruvate kinase, liver and RBC (PKLR) were increased at 1 and 100 μg/L CBZ without significant difference in transcript levels. These findings characterize molecular responses and histological changes in the liver that generate new insights into CBZ hepatotoxicity in Chinese rare minnow.
Show more [+] Less [-]Phosphorus flame retardants and Bisphenol A in indoor dust and PM2.5 in kindergartens and primary schools in Hong Kong Full text
2018
Deng, Wen-Jing | Li, Na | Wu, R. S. S. (Rudolf Shiu-sun) | Richard, Wong K.S. | Wang, Zijian | Ho, Wingkei
Organophosphate flame retardants (PFRs) and bisphenol A (BPA) were measured in indoor dust and PM₂.₅ samples from nine kindergartens and two primary schools in Hong Kong. The average levels of PM₂.₅ ranged from 4.0E+03 ng/m³ to 1.5E+04 ng/m³. Average levels of PFRs (from 1.5 ng/m³ to 20 ng/m³ in PM₂.₅; from 8.0E−02 μg/g dw to 2.4 μg/g dw in dust) and BPA (from 6.4E−01 ng/m³ to 1.0 ng/m³ in PM₂.₅; from 1.0E−02 μg/g dw to 2.0E−01 μg/g dw in dust) were detected in most of the sampling sites. Tri-(2-Chloroethyl) phosphate (TCEP), tris(1,3-Dichloro-2-propyl) phosphate (TDCP), tris-(chloroisopropyl) phosphate (TCPP), and triphenyl phosphate (TPHP) were present in low levels in PM₂.₅ with medians of 16, 14, 8.7, and 3.2 ng/m³, respectively. In dust, the medians were 1.5E−01, 5.5E−02, 5.9E−01, 8.6E−01, and 8.5E−02 μg/g dw for TCEP, TCPP, TDCPP, TPHP, and 2-ethylhexyl diphenyl phosphate, respectively. The medians of BPA were 6.4E−01 ng/m³ and 7.4E−02 μg/g dw for PM₂.₅ and dust, respectively. A positive correlation was found between indoor PM₂.₅ and dust in the levels of TCEP (r = 0.85; p = .05). In the individual classroom in this survey, the predominant PFRs were similar, that is, TDCP and TCEP in indoor PM₂.₅ while TPHP and TDCP in dust. TPHP and TCEP in primary schools were obviously lower than those in kindergartens. The estimated daily intakes via PM₂.₅ and dust for all selected PFRs ranged from 1.3E−4 μg/kg/d to 2.0E−02 μg/kg/d, and the value of less than the detection limit at 3.5E−4 μg/kg/d was found for BPA. The EDI values of TPHP in dust non-dietary intake fraction were higher than those in the others. Calculated hazard indices (EDI/RfD) ranged from 4.8E−06 and 5.5E−03, showing that PFRs and BPA in PM₂.₅ and dust presented no health risks to children.
Show more [+] Less [-]Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations Full text
2018
Hashimoto, Yohey | Kanke, Yoshiaki
A substantial amount of sulfate is often supplied in paddy fields with concomitant applications of chemical fertilizers and manure for rice growth. It is unclear how solubility and speciation of arsenic (As) are affected by the levels of soil sulfate and their relationship to soil redox status and sulfur (S) and iron (Fe) speciation in a short cycle of soil reducing (flooding) and oxidizing (drying) periods. The objective of this study was to investigate the solubility of As in relation to chemical speciation of As and S in different levels of soil sulfate through a time series of measurements during a 40-day reduction period (Eh < −130 mV) followed by a 32-day reoxidation period (Eh > 400 mV) using X-ray absorption fine structure (XAFS) spectroscopy. An excess of sulfate decreased extractable and dissolved As in the soil reducing period due to retardation of soil reduction process that decreased soluble As(III) in the soil solid phase. The As species at the end of soil reducing period were 38–41% As(V), 46–51% As(III), and 11–13% As2S3-like species, regardless of initial S treatments. In the following soil reoxidation, As2S3-like species were sensitive to oxidation and disappeared completely in the first 2 days when the Eh value increased rapidly above 160 mV. The addition of extra sulfate to the soil did not result in the formation of neither reduced S species nor As2S3-like species. About 50% of As(III) to the total As persisted over 32 days of soil reoxidation period (Eh > 400 mV), suggesting some mechanisms against oxidation of As(III) such as physical sequestration in soil microsites. This study demonstrates that the extra SO4 in paddy soils can help mitigate the dissolution of As in reduction and reoxidation periods.
Show more [+] Less [-]Generation of hydroxyl radicals and singlet oxygen by particulate matter and its inorganic components Full text
2018
Mikrut, Magdalena | Regiel-Futyra, Anna | Samek, Lucyna | Macyk, Wojciech | Stochel, Grazyna | Eldik, Rudi van
Particulate matter (PM) can strongly affect redox biochemistry and therefore induce the response of the immune system and aggravate the course of autoimmune diseases. Nanoparticles containing transition metal compounds possessing semiconductor properties (TiO2, ZnO) may act as photocatalysts and accelerate the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this study, the NIST standard reference material, SRM 1648a, has been analyzed in terms of this consideration. Organic compounds present in SRM 1648a were removed by cold oxygen plasma treatment. Samples of SRM 1648a with removed organic content (<2% of organic carbon, <1% of nitrogen) were obtained within 2 h of this treatment. The treatment did not affect the morphology of the powder. The reference material and PM2.5 collected in Kraków are composed of smaller particles and nanoparticles forming aggregates. The efficiency of (photo)generation of hydroxyl radicals and singlet oxygen was compared for original and organics-free samples. The analyzed samples showed the highest activity towards ROS generation when exposed to UV-vis-NIR light, moderate under UV irradiation, and the lowest in dark. Data collected in the present study suggest that the organic fraction is mostly responsible for singlet oxygen generation, as almost twice higher efficiency of 1O2 generation was observed for the original NIST sample compared to the material without the organic fraction. However, particulate matter collected in Kraków was found to have a five times higher activity in singlet oxygen generation (compared for original NIST and Kraków dust samples).
Show more [+] Less [-]Improve ground-level PM2.5 concentration mapping using a random forests-based geostatistical approach Full text
2018
Liu, Ying | Cao, Guofeng | Zhao, Naizhuo | Mulligan, Kevin | Ye, Xinyue
Accurate measurements of ground-level PM₂.₅ (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) concentrations are critically important to human and environmental health studies. In this regard, satellite-derived gridded PM₂.₅ datasets, particularly those datasets derived from chemical transport models (CTM), have demonstrated unique attractiveness in terms of their geographic and temporal coverage. The CTM-based approaches, however, often yield results with a coarse spatial resolution (typically at 0.1° of spatial resolution) and tend to ignore or simplify the impact of geographic and socioeconomic factors on PM₂.₅ concentrations. In this study, with a focus on the long-term PM₂.₅ distribution in the contiguous United States, we adopt a random forests-based geostatistical (regression kriging) approach to improve one of the most commonly used satellite-derived, gridded PM₂.₅ datasets with a refined spatial resolution (0.01°) and enhanced accuracy. By combining the random forests machine learning method and the kriging family of methods, the geostatistical approach effectively integrates ground-based PM₂.₅ measurements and related geographic variables while accounting for the non-linear interactions and the complex spatial dependence. The accuracy and advantages of the proposed approach are demonstrated by comparing the results with existing PM₂.₅ datasets. This manuscript also highlights the effectiveness of the geographical variables in long-term PM₂.₅ mapping, including brightness of nighttime lights, normalized difference vegetation index and elevation, and discusses the contribution of each of these variables to the spatial distribution of PM₂.₅ concentrations.
Show more [+] Less [-]Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests Full text
2018
Oulehle, Filip | Tahovská, Karolina | Chuman, Tomáš | Evans, C. D. (Chris D.) | Hruška, Jakub | Růžek, Michal | Bárta, Jiří
Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global “hot spots” of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.
Show more [+] Less [-]Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution Full text
2018
Xu, Congbin | Jiao, Chunlei | Yao, Ruihua | Lin, Aijun | Jiao, Wentao
The cleaning-up of viscous oil spilled in ocean is a global challenge, especially in Bohai, due to its slow current movement and poor self-purification capacity. Frequent oil-spill accidents not only cause severe and long-term damages to marine ecosystems, but also lead to a great loss of valuable resources. To eliminate the environmental pollution of oil spills, an efficient and environment-friendly oil-recovery approach is necessary. In this study,¹expanded graphite (EG) modified by CTAB-KBr/H₃PO₄ was synthesized via composite intercalation agents of CTAB-KBr and natural flake graphite, followed by the activation of phosphoric acid at low temperature. The resultant modified expanded graphite (M-EG) obtained an interconnected and continuous open microstructure with lower polarity surface, more and larger pores, and increased surface hydrophobicity. Due to these characteristics, M-EG exhibited a superior adsorption capacity towards marine oil. The saturated adsorption capacities of M-EG were as large as 7.44 g/g for engine oil, 6.12 g/g for crude oil, 5.34 g/g for diesel oil and 4.10 g/g for gasoline oil in 120min, exceeding the capacity of pristine EG. Furthermore, M-EG maintained good removal efficiency under different adsorption conditions, such as temperature, oil types, and sodium salt concentration. In addition, oils sorbed into M-EG could be recovered either by a simple compression or filtration-drying treatment with a recovery ratio of 58–83%. However, filtration-drying treatment shows better performance in preserving microstructures of M-EG, which ensures the adsorbents can be recycled several times. High removal capability, fast adsorption efficiency, excellent stability and good recycling performance make M-EG an ideal candidate for treating marine oil pollution in practical application.
Show more [+] Less [-]