Refine search
Results 1081-1090 of 4,926
An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel
2019
Gonçalves, Cátia | Martins, Marta | Sobral, Paula | Costa, Pedro M. | Costa, Maria H.
Plastic debris has been recognized as a growing threat to marine biota due to its widespread distribution and possible interactions with marine species. Concerns over the effects of plastic polymers in marine ecosystems is reflected in the high number of toxicological studies, regarding microplastics (<5 mm) and marine fauna. Although several studies reported that organisms ingest and subsequently eliminate microplastics (MP), the potential effects at organ and tissue level remain unclear, especially considering exposure to different microplastic sizes and concentrations. The present study aimed at investigating potential pathophysiological effects of the ingestion of MP by marine filter-feeders. For the purpose, Mediterranean mussel (Mytilus galloprovincialis) was exposed to spherical polystyrene MP (2 and 10 μm Ø) over short- and medium-term exposure periods, under single and combined concentrations that represent high, yet realistic doses (10 and 1000 MP mL−1). Overall, results suggest rapid MP’ clearance from water column by filtering, regardless of MP size. Ingestion occurred, identified by MP in the lumen of the gut (mostly in midgut region), followed by excretion through faeces. However, no MP were found in gills or digestive gland diverticula. Biochemical indicators for oxidative stress were generally irresponsive regardless of organ and time of exposure. Small foci of haemocytic infiltration in gastric epithelia were found, albeit not clearly related to MP ingestion. Globally, no evident histopathological damage was recorded in whole-body sections of exposed animals. The present findings highlight the adaptative ability of filter-feeding bivalves to cope with filtration of suspended MP, resulting in rapid elimination and reduced internal damage following ingestion of spherical MP. Nevertheless, the fact that the animals are able to translocate MP to the gut reveals that filter feeding organisms may indeed became a target of concern for fragmented materials with smaller, mixed sizes and sharper edges.
Show more [+] Less [-]Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment
2019
Taylor, Allison R. | Wang, Jie | Liao, Chunyang | Schlenk, Daniel | Gan, Jay
Hydrophobic legacy contaminants like dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) were banned almost half a century ago. While their residues still remain in many environmental compartments, they have undergone extensive aging and likely have lower bioaccessibility (the available fraction) compared to fresh residues. However, risk assessment relies heavily on the use of total chemical concentration, rather than accounting for age-diminished bioaccessibility, likely leading to overestimated risks. In this study, we used 24 h Tenax desorption to measure the potential bioaccessibility of DDTs and PCBs in two sediment cores taken from the Palos Verdes Shelf Superfund site in the Pacific Ocean. The total concentrations of DDTs and PCBs from the core located at the sewage outfall (8C) were as high as 41,000–15,700 μg/kg (dry weight, dw) and 530-2600 μg/kg dw, respectively, while those from a location 7 km northeast of the outfall (3C) were 2–3 orders of magnitude lower. Bioaccessibility estimated by 24-h Tenax-aided desorption (F24h) decreased in the order of DDD > DDE > DDT for DDT derivatives, and PCB 52 > PCB 70 > PCB 153 for PCB congeners, showing a negative correlation with their log Kow. Due to the extensive aging, F24h values were <20% of the total chemical concentration for most contaminants and <5% for DDT, DDE and PCB 153, suggesting that aging greatly diminished their bioavailability. However, a quantitative relationship between F24h and sediment age along the vertical profile was not found, likely because the contaminant residues had undergone aging before their offsite transport and deposition onto the ocean floor. As the use of man-made chemicals such as DDT and PCBs was discontinued in the U.S. many decades ago, the reduction in their bioavailability due to aging may be universal and should be taken into consideration to avoid overly conservative risk predictions or unnecessary mitigation interventions.
Show more [+] Less [-]Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay
2019
Shaheen, Sabry M. | Wang, Jianxu | Swertz, Ann-Christin | Feng, Xinbin | Bolan, Nanthi | Rinklebe, Jörg
Enhancing metals phytoextraction using gentile mobilizing agents might be an appropriate approach to increase the phytoextraction efficiency and to shorten the phytoremediation duration. The effect of sulfur-impregnated organoclay (SIOC) on the redistribution of potentially toxic elements (PTEs) among their geochemical fractions in soils and their plant uptake has not yet been studied. Therefore, our aim is to investigate the role of different SIOC application doses (1%, 3% and 5%) on operationally defined geochemical fractions (soluble + exchangeable; bound to carbonate; manganese oxide; organic matter; sulfide; poorly- and well-crystalline Fe oxide; and residual fraction) of Cd, Cr, Cu, Ni, Pb, and Zn, and their accumulation by pea (Pisum sativum) and corn (Zea mays) in a greenhouse pot experiment using a polluted floodplain soil. The SIOC caused a significant decrease in soil pH, and an increase in organic carbon and total sulfur content in the soil. The addition of SIOC increased significantly the soluble + exchangeable fraction and bioavailability of the metals. The SIOC leads to a transformation of the residual, organic, and Fe-Mn oxide fractions of Cd, Cu, Ni, and Zn to the soluble + exchangeable fraction. The SIOC addition increased the potential mobile (non-residual) fraction of Cr and Pb. The SIOC increased the sulfide fraction of Cr, Ni, and Zn, while it decreased the same fraction for Cd, Cu, and Pb. The effect of SIOC on the redistribution of metal fractions increased with enhancing application dosages. Pea accumulated more metals than corn with greater accumulation in the roots than shoots. Application of the higher dose of SIOC promoted the metals accumulation by roots and their translocation to shoots of pea and corn. Our results suggest the potential suitability of SIOC for enhancing the phytomanagement of PTEs polluted soils and reducing the environmental risk of these pollutants.
Show more [+] Less [-]Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine
2019
Wang, Bingzheng | Ni, Bing-Jie | Yuan, Zhiguo | Guo, Jianhua
The intensive use of antibiotics results in the continuous release of antibiotics into wastewater treatment systems, leading to the spread of antibiotic resistance. Nitrifying system is reported to be capable of degrading antibiotics, yet few studies have systematically investigated the inherent correlation among ammonium oxidation rate, antibiotic degradation and genetic expression of nitrifying bacteria along the process. This study selected a widely used sulfonamide antibiotic, sulfadiazine (SDZ), to investigate its biodegradation potential by an enriched nitrifying culture and the response of nitrifying bacteria against antibiotic exposure. Our results demonstrated that SDZ degradation was mainly contributed by cometabolism of ammonia-oxidizing bacteria (AOB), rather than biomass adsorption. The quantitative reverse transcription PCR (RT-qPCR) analysis revealed that the expression level of amoA gene was down-regulated due to the SDZ exposure. In addition, the degradation products of SDZ did not exhibit inhibitory effect on Escherichia coli K12, indicating the biotoxicity of SDZ could be mitigated after biodegradation. The findings offer insights regarding the biodegradation process of sulfonamide antibiotics via cometabolism by AOB.
Show more [+] Less [-]Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor γ using fish in vivo and in vitro models
2019
Qiu, Wenhui | Yang, Ming | Liu, Jingyu | Xu, Hai | Luo, Shusheng | Wong, Minghung | Zheng, Chunmiao
Bisphenol S (BPS) has been widely used as a bisphenol alternative in recent few years. However, with mounting evidence suggesting that the presence of BPS in the environment also poses risks to ecosystems and human health, we decided to use the juvenile common carp (Cyprinus carpio) and its primary macrophages as in vivo and in vitro models to examine if BPS is a safe substitute of BPA. The present study evaluated the immune responses of chronic BPS exposure and their mechanisms of action associated with peroxisome proliferator-activated receptor (PPAR) signaling pathway. Potential oxidative stress and pro-inflammatory effects of BPS exposure were identified in fish liver after 60-day exposure, based on the increased reactive oxygen species (ROS) production, antioxidant capacity, NO production, lipid peroxidation, and induction of inflammatory cytokine expression, as well as acute phase protein levels of C-reactive protein, immunoglobulin M, lysozyme, and complement component 3. Moreover, pparγ, PPAR pathway-associated genes retinoid x receptor α (rxrα) and nuclear factor-κb (nfκb) presented a rough concentration-dependent alteration after BPS exposure. An acute BPS exposure to the isolated primary macrophages from juvenile common carp was performed to help elucidate gene expression patterns of pparγ, rxrα, and nfκb in a typical immune cell model, the results were consistent with what we found in vivo experiments for long-term BPS exposure. Furthermore, with coexposure to BPS and a PPARγ antagonist, the restriction of PPAR signaling pathway significantly inhibited the induction of ROS and the mRNA level of interleukin-1β, confirming the involvement of PPAR pathway in BPS-induced chronic inflammatory stress in liver.
Show more [+] Less [-]Synergistic effects of glyphosate formulation herbicide and tank-mixing adjuvants on Pardosa spiders
2019
Niedobová, Jana | Skalský, Michal | Ouředníčková, Jana | Michalko, Radek | Bartošková, Adéla
Glyphosate-based herbicides are the world’s most consumed agrochemicals, and they are commonly used in various agroecosystems, including forests, as well as in urban zones and gardens. These herbicides are sold as formulations containing adjuvants. Other tank-mixing adjuvants (most often surfactants) are commonly added to these formulations prior to application. According to the manufacturers of agrochemicals, such tank mixes (as these are known in agronomic and horticultural practice) have modified properties and perform better than do the herbicides as used alone. The effects of these tank mixes on the environment and on beneficial arthropods are almost unknown. Therefore, we studied whether a herbicide formulation mixed with adjuvant has modified effects on one of the most common genera of ground-dwelling wolf spiders vis-à-vis the herbicide formulation and adjuvants themselves. Specifically, we studied the synergistic effect in the laboratory on the predatory activity (represented by the number of killed flies) of wolf spiders in the genus Pardosa after direct treatment using the glyphosate-based herbicide formulation Roundup klasik Pro®, Roundup klasik Pro® in a mixture with the surfactant Wetcit®, Roundup klasik Pro® in a mixture with the surfactant Agrovital®, and the surfactants alone. We found that pure surfactants as well as herbicide-and-surfactants tank mixes significantly decrease the predatory activity of Pardosa spiders in the short term even as Roundup klasik Pro® did not itself have any such effect. Our results support the hypothesis that plant protection tank mixes may have modified effect on beneficial arthropods as compared to herbicide formulations alone. Therefore, testing of pesticide tank mixes is highly important, because it is these tank mixes that are actually applied to the environment.
Show more [+] Less [-]Multivariate spatial patterns of ambient PM2.5 elemental concentrations in Eastern Massachusetts
2019
Requia, Weeberb J. | Coull, Brent A. | Koutrakis, Petros
Understanding the factors that affect spatial differences in PM2.5 composition is crucial for implementing emissions control and health policies. Although previous studies have explored modeling of spatial patterns as a tool to improve human exposure assessment, little work has employed a multivariate clustering approach to identify spatial patterns in particle composition. In this study, we used this approach to assess the spatial patterns of ambient PM2.5 elemental concentrations in Eastern Massachusetts in the United States. To distinguish one cluster of sites from another, we considered air pollution sources and geodemographic variables. We evaluated spatial patterns for 11 elemental components of ambient PM2.5, which included S, K, Ca, Fe, Zn, Cu, Ti, Al, Pb, V, and Ni. The analyses for S, Ca, Cu, Ti, Al, and Pb resulted in: 2 clusters for Fe, Zn, V, and Ni; 3 clusters; and for 12 clusters for K. Overall, our findings suggest substantial variation of clusters among PM2.5 components. In addition, land use, population density, and daily traffic were used as variables to more effectively characterize clusters of sites. We used R2 values to estimate the effectiveness of each variable in characterizing clusters. Larger R2 values indicate better the discrimination among the sites. For example, population density had the highest R2 value when the analysis was performed for S, Ca, Zn, Ti, Al, Pb, and V; land use presented the highest R2 value for Cu, V, and Ni; and, traffic showed the highest R2 value for PM2.5 mass concentration. This study improves the ability to model both the between- and within-area variability of source emissions and pollution regime, using concentrations of PM2.5 components.
Show more [+] Less [-]Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran
2019
Abbasi, Sajjad | Keshavarzi, Behnam | Moore, Farid | Turner, Andrew | Kelly, Frank J. | Dominguez, Ana Oliete | Jaafarzadeh, Neemat
While the distribution and effects of microplastics (MPs) have been extensively studied in aquatic systems, there exits little information on their occurrence in the terrestrial environment and their potential impacts on human health. In the present study, street dust and suspended dust were collected from the city and county of Asaluyeh, Iran. Samples were characterized by various microscopic techniques (fluorescence, polarized light, SEM) in order to quantify and classify MPs and microrubbers (MRs) in the urban and industrial environments that are potentially ingestible or inhalable by humans. In < 5-mm street dust retrieved from 15 sites, there were an average of 900 MPs and 250 MRs per 15 g of sample, with MPs exhibiting a range of colours and sizes (<100 to >1000 μm). Most street dust samples were dominated by spherical and film-like particles and MRs largely made up of different sizes of black fragments and fibrous particulates. Airborne dust collected daily over an eight-day period at two locations revealed the ubiquity of fibrous MPs of sizes ranging from about 2 μm to 100 μm and an abundance of about 1 per m⁻³. These samples contained small MR fragments whose precise characteristics were more difficult to define. Based on the median concentrations in street dust, estimates of acute exposure through ingestion are about 5 and 15 MP d⁻¹ and 2 and 7 MR d⁻¹ for construction workers and young children, respectively. Quantities of inhalable particulates were more difficult to define but the potential toxicity of MPs and MRs taken in by this route was evaluated from assays performed using particulates isolated from street dusts in the presence of an artificial lung fluid. Both types of particle exhibited oxidative potential, with MPs displaying consumptions of different antioxidants that were comparable with corresponding values for a reference urban particulate dust but lower than those for London ambient particulate matter. Thus, MPs and MRs contribute towards the health impacts of urban and industrial dusts but their precise roles remain unclear and warrant further study.
Show more [+] Less [-]Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain)
2019
Ruiz-Orejón, Luis F. | Mourre, Baptiste | Sardá, Rafael | Tintoré, Joaquín | Ramis-Pujol, Juan
Plastic pollution is widespread in all the oceans and seas, representing a significant threat to most of their ecosystems even in marine protected areas (MPAs). This study determines the floating plastic distribution in four different periods between 2014 and 2015 in the recently approved Menorca Channel MPA (Balearic Islands). Plastic debris were persistent during all sampling periods on the surface of the Channel, composed mainly by the microplastic sizes. Average particle abundances ranged from 138,293 items⋅km−2 in autumn to 347,793 items⋅km−2 during the spring, while weight densities varied from 458.15 g(DW)⋅km−2 in winter to 2016.67 g(DW)⋅km−2 in summer. Rigid plastics were the most frequent particles in all the periods analysed (from 89.40%-winter to 94.54%-spring). The high-resolution and particle distribution models corroborated that the oceanographic variability shapes different patterns of presence of plastics, and in particular the existence of areas with almost no plastics.
Show more [+] Less [-]Oiling of the continental shelf and coastal marshes over eight years after the 2010 Deepwater Horizon oil spill
2019
Turner, R Eugene | Rabalais, Nancy N. | Overton, Edward B. | Meyer, Buffy M. | McClenachan, Giovanna | Swenson, Erick M. | Besonen, Mark | Parsons, Michael L. | Zingre, Jeffrey
We measured the temporal and spatial trajectory of oiling from the April, 2010, Deepwater Horizon oil spill in water from Louisiana's continental shelf, the estuarine waters of Barataria Bay, and in coastal marsh sediments. The concentrations of 28 target alkanes and 43 target polycyclic aromatic hydrocarbons were determined in water samples collected on 10 offshore cruises, in 19 water samples collected monthly one km offshore at 13 inshore stations in 2010 and 2013, and in 16–60 surficial marsh sediment samples collected on each of 26 trips. The concentration of total aromatics in offshore waters peaked in late summer, 2010, at 100 times above the May, 2010 values, which were already slightly contaminated. There were no differences in surface or bottom water samples. The concentration of total aromatics declined at a rate of 73% y−1 to 1/1000th of the May 2010 values by summer 2016. The concentrations inside the estuary were proportional to those one km offshore, but were 10–30% lower. The oil concentrations in sediments were initially different at 1 and 10 m distance into the marsh, but became equal after 2 years. Thus, the distinction between oiled and unoiled sites became blurred, if not non-existent then, and oiling had spread over an area wider than was visible initially. The concentrations of oil in sediments were 100–1000 times above the May 2010 values, and dropped to 10 times higher after 8 years, thereafter, demonstrating a long-term contamination by oil or oil residues that will remain for decades. The chemical signature of the oil residues offshore compared to in the marsh reflects the more aerobic offshore conditions and water-soluble tendencies of the dissolved components, whereas the anaerobic marsh sediments will retain the heavier molecular components for a long time, and have a consequential effect on the ecosystems.
Show more [+] Less [-]