Refine search
Results 1081-1090 of 7,288
Nitrogen concentration response to the decline in atmospheric nitrogen deposition in a hypereutrophic lake Full text
2022
Jiang, Xingyu | Gao, Guang | Deng, Jianming | Zhu, Guangwei | Tang, Xiangming | Shao, Keqiang | Hu, Yang
Atmospheric nitrogen (N) deposition is becoming an increasingly important factor affecting the nutrient level of lakes, especially considering the long-term control measures for external N inputs in developed regions. However, few studies have investigated the effects of atmospheric N deposition and the respective ecological significance in eutrophic waters. In this study, bulk and wet deposition rates of all N species and water N concentrations in Lake Taihu were determined based on the long-term (2010–2018) high-resolution (weekly or monthly) systematic observations. The results indicated that the decline in wind speed and change in land-use type likely decreased the N deposition rate. The bulk N deposition rates decreased from 45.77 kg N ha⁻¹ yr⁻¹ in 2012 to 22.06 kg N ha⁻¹ yr⁻¹ in 2018, which could account for decrease of 1.01 mg N L⁻¹ in the lake N concentrations via a rough estimation, and this value was close to the actual variation in N concentration in Lake Taihu. The correlation between N concentrations and atmospheric deposition fluxes was stronger than that between N concentrations and riverine N inputs or lake storage, which further indicated that change in atmospheric N deposition was the key reason for the variation in N concentrations. The direct bulk N deposition into Lake Taihu accounted for 17.5% and 51.4% of the riverine N inputs and lake N inventory, respectively. Moreover, atmospheric N deposition was concentrated in summer, which was dominated by reduced N, and it may be important for the duration of algal blooms. Therefore, external N inputs, including atmospheric N deposition, should be further controlled for an effective mitigation of eutrophication and algal blooms in Lake Taihu.
Show more [+] Less [-]The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption Full text
2022
Schönemann, Alexandre M. | Moreno Abril, Sandra Isabel | Diz, Angel P. | Beiras, Ricardo
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 10⁵-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Show more [+] Less [-]Quantitative analysis of organophosphate pesticides and dialkylphosphates in duplicate diet samples to identify potential sources of measured urinary dialkylphosphates in Japanese women Full text
2022
Tsuchiyama, Tomoyuki | Ito, Yuki | Oya, Naoko | Nomasa, Karin | Sato, Hirotaka | Minato, Kyoko | Kitamori, Kazuya | Oshima, Shiori | Minematsu, Ayako | Niwa, Kazumasa | Katsuhara, Miki | Fukatsu, Kosuke | Miyazaki, Hitoshi | Ebara, Takeshi | Kamijima, Michihiro
Increased levels of dialkylphosphates (DAP) in maternal urine are associated with a variety of adverse developmental outcomes in children. Although urinary DAP levels are usually considered to be a marker of exposure to organophosphate (OP) pesticides, excretion of DAP may also increase by ingesting preformed DAP. To date, no study has quantitatively assessed the possible contribution of the dietary intake of preformed DAP and OP pesticides to urinary levels of DAP. Therefore, we aimed to estimate the levels of 6 DAPs and 84 OP pesticides in duplicate diet samples and urine samples collected from 73 women living in urban areas of Japan in 2018. DAP and OP pesticides were detected in 94% and 45% of diet samples, while DAP was detected in 100% of urinary samples, respectively. The average daily intake of preformed DAP was significantly higher than that of parent OP pesticides in our participants. Dimethylphosphate and diethylphosphate were predominant in the preformed DAP, and the estimated average daily intake of total amount of DAP was 78.3 nmol. Fruits and vegetables were the major dietary sources of DAP. Dietary intake of DAP was positively associated with urinary DAP levels, suggesting that a considerable amount of urinary DAP was derived from ingesting preformed DAP. Our results show that attributing urinary DAP levels exclusively to OP pesticide exposure would result in a substantial overestimation of the exposure level. Therefore, the urinary levels of DAP may not be suitable for evaluating OP pesticide exposure in the general urban population.
Show more [+] Less [-]Effects of lubricant oil and diesel on macrofaunal communities in marine sediments: A five year field experiment in Antarctica Full text
2022
Stark, Jonathan S.
Hydrocarbons pose significant risks to marine ecosystems. A field experiment investigated the effects of four different hydrocarbon products (diesel fuel and three lubricating oils: Unused, Used and Biodegradable) on sediment macrofaunal communities over a five year period, in a shallow Antarctic marine embayment. Sediments were defaunated, treated with a hydrocarbon and deployed in trays (including a control) on the seabed. Diesel fuel had the biggest initial impact on communities, with strong effects at 5 weeks and 1 year, in particular on annelids, but also on amphipods, ostracods and cumaceans. By five years, however, the effect of diesel was less than that of lubrication oils and showed more recovery than oiled treatments and the biggest effect was from the Used oil. There was an effect of hydrocarbons on diversity, especially diesel, at 5 weeks and 1 year, but by 2 and 5 years diversity was not different or greater in hydrocarbon treatments than controls. Total abundance was always lower in hydrocarbon treatments than controls, especially for crustaceans, but annelids were more abundant in oil treatments than controls at 5 years. Oils, and in some cases diesel, enhanced the abundance of some taxa at 2–5 years, including molluscs, some polychaete families (capitellids, cirratulids, dorvilleids), oligochaetes, as well as ostracods, cumaceans and isopods. Amphipods and tanaids were most sensitive to hydrocarbons, and annelids were very sensitive to diesel. The Biodegradable oil had similar magnitude community effects to standard oil at 5 years, but annelids were more affected by Biodegradable oil, particularly at 1 and 2 years, and it did not enhance annelid or mollusc abundance at 5 years like the other oils, except for some polychaete families. Impacts of spilled hydrocarbons in Antarctica will persist well beyond 5 years, but diesel impacts will recover faster than oil.
Show more [+] Less [-]Accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in human breast milk from a seaside city of North China Full text
2022
Sun, Shuai | Zhang, Baoqin | Luo, Yun | Ma, Xindong | Cao, Rong | Zhang, Yichi | Gao, Yuan | Chen, Jiping | Zhang, Haijun
Breast milk samples were collected from 51 mothers in a seaside city Dalian, where the residents usually have higher dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) due to the larger consumption of seafood. The lipid-basis concentrations of ∑Cl₂–₈DD/Fs, ∑Cl₂–₁₀Bs, and total toxicity equivalent (WHO-TEQ) were measured to be in the ranges of 35.7–2727.8 pg/g, 4.91–52.64 ng/g, and 2.27–36.30 pg/g, respectively. The average proportion of ∑Cl₂–₃DD/Fs was higher than that of ∑Cl₄–₇DD/Fs in the collected human breast milk samples, suggesting that the health risk of Cl₂–₃DD/Fs should be especially concerned. The concentration data of PCDD/Fs and PCBs in human breast milk essentially followed a positive skew probability distribution. Women in high-level exposure scenarios exhibited a higher potential to accumulate homologues Cl₄DFs, Cl₇DFs, Cl₈DF, and Cl₆Bs in breast milk. Three PCDD/F congeners (1,2,3,6,7,8-Cl₆DF, 1,2,3,4,7,8-Cl₆DF, and 1,2,3,4,6,7,8-Cl₇DD) and three PCB congeners (PCB 126, PCB 138, and PCB 169) were identified as good indicators for the accumulation of PCDD/Fs and PCBs in human breast milk, respectively. The food-to-milk accumulation factors (FMAF) were calculated to evaluate the accumulation potentials of different PCDD/F and PCB congeners in human breast milk via dietary exposure. The calculated FMAF value presented a non-monotonic variation with the logarithm of n-octanol–water partition coefficient (log KOW) with a peak at a log KOW value of about 7.3 and a valley at a log KOW value of about 8. The mean value of the estimated daily intake (EDI) of total WHO-TEQ for breast-fed infants in Dalian, predicted by Monte Carlo simulation, was 10 folds higher than the upper range of the tolerable daily intake (TDI) value (4 pg WHO-TEQ/kg bw/d), suggesting continued and enhanced efforts should be made to reduce the exposure risk of infants to PCDD/Fs and PCBs.
Show more [+] Less [-]Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction Full text
2022
Geyer, Roland | Gavigan, Jenna | Jackson, Alexis M. | Saccomanno, Vienna R. | Suh, Sangwon | Gleason, Mary G.
Synthetic microfibers have been identified as the most prevalent type of microplastic in samples from aquatic, atmospheric, and terrestrial environments across the globe. Apparel washing has shown to be a major source of microfiber pollution. We used California as a case study to estimate the magnitude and fate of microfiber emissions, and to evaluate potential mitigation approaches. First, we quantified synthetic microfiber emissions and fate from apparel washing in California by developing a material flow model which connects California-specific data on synthetic fiber consumption, apparel washing, microfiber generation, and wastewater and biosolid management practices. Next, we used the model to assess the effectiveness of different interventions to reduce microfiber emissions to natural environments. We estimate that in 2019 as much as 2.2 kilotons (kt) of synthetic microfibers were generated by apparel washing in California, a 26% increase since 2008. The majority entered terrestrial environments (1.6 kt), followed by landfills (0.4 kt), waterbodies (0.1 kt), and incineration (0.1 kt). California's wastewater treatment network was estimated to divert 95% of microfibers from waterbodies, mainly to terrestrial environments and primarily via land application of biosolids. Our analysis also reveals that application of biosolids on agricultural lands facilitates a directional flow of microfibers from higher-income urban counties to lower-income rural communities. Without interventions, annual synthetic microfiber emissions to California's natural environments are expected to increase by 17% to 2.1 kt by 2026. Further increasing the microfiber retention efficiency at the wastewater treatment plant would increase emissions to terrestrial environments, which suggests that microfibers should be removed before entering the wastewater system. In our model, full adoption of in-line filters in washing machines decreased annual synthetic microfiber emissions to natural environments by 79% to 0.5 kt and offered the largest reduction of all modeled scenarios.
Show more [+] Less [-]Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights Full text
2022
Zhang, Lin | Ji, Xiaoli | Ding, Fan | Wu, Xuan | Tang, Ning | Wu, Qing
The association between polycyclic aromatic hydrocarbons (PAHs) and male reproductive dysfunction has attracted increasing attention. The purpose of this study was to compare the male reproductive toxicity of multiple PAHs and to investigate the underlying molecular mechanisms. TM4 cells (mouse testicular Sertoli cells, SCs) were treated with benzo(a)pyrene (BaP), pyrene (Py), fluoranthene (Fl) and phenanthrene (Phe) (0, 0.1, 1, 10, 50, or 100 μM) for varying time points (4, 12, 24, or 48 h), and male C57BL/6 mice were administered BaP and Py (0, 10, 50, or 100 mg/kg body weight) for 14 days based on the cell experimental results. Histopathological examination, western blotting, ELISA, biochemical assays, RT–PCR, flow cytometry, JC-1 staining and trans-epithelium electrical resistance (TEER) measurements were used to assess apoptosis, blood-testis barrier (BTB) integrity, intracellular calcium ([Ca²⁺]ᵢ) concentrations and oxidative stress (OS). The results revealed that the mRNA levels and enzymatic activities of CYP450 and GST family members; levels of ROS, MDA, cleaved caspase 3 (c-caspase 3), caspase 9, Bax, and cytochrome C (CytC); and numbers of TUNEL-positive cells were significantly increased by BaP and Py, while levels of AhR, GSH, SOD, CAT, Bcl-2 and ΔΨm were decreased. Additionally, BaP and Py notably interfered with tight junctions (TJs) and adherens junctions (AJs) in the BTB. Intriguingly, BaP, but not Py, induced [Ca²⁺]ᵢ overload and gap junction (GJ) destruction. There was no dramatic effect of Fl and/or Phe on any of the above parameters except that slight cytotoxicity was observed with higher doses of Fl. Collectively, these findings showed that BaP and Py elicited SC apoptosis and BTB disruption involving mitochondrial dysfunction and OS, but [Ca²⁺]ᵢ fluctuation and GJ injury were only observed with BaP-induced reproductive toxicity. The male reproductive toxicity of the selected PAHs was ranked in the order of BaP > Py > Fl > Phe.
Show more [+] Less [-]Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China Full text
2022
Fang, Ding | Wang, Hui | Liang, Yangyang | Cui, Kai | Yang, Kun | Lu, Wenxuan | Li, Jing | Zhao, Xiuxia | Gao, Na | Yu, Qizhi | Li, Hui | Jiang, He
The Nanfei River was one of dominant inflowing rivers of the fifth largest freshwater Chaohu Lake in China, which had been subjected to increasing nutrients and contaminants from population expansion, rapid industrialization and agricultural intensification in recent decades. In present study, surface sediment from the Nanfei River was collected to investigate the anthropogenic impact on distribution and bioavailability of heavy metals. Possible Cd sources along the river were constrained by using Cd isotope signatures and labile concentrations of heavy metals in sediment were determined through the DGT technique for risk assessment. Results showed that Cd in river sediment showed greatest enrichment (EF 0.8–9.4), indicating massive pollution from anthropogenic activities. Among the various possible Cd source materials, urban road dust, industrial soil and chicken manure, displayed higher Cd abundance and enrichment that might contribute to Cd accumulation in river sediment. Cadmium isotopic composition in river sediment was ranged from −0.21 ± 0.01‰ to 0.13 ± 0.03‰, whereas yielded relative variation from −0.31 ± 0.02‰ to 0.23 ± 0.01‰ in source materials. Accordingly, Cd sources along the river were constrained, i.e. traffic and industrial activities in the upper and middle reaches whereas agricultural activities in the lower reaches. Furthermore, the evaluation on ecological risk of heavy metals in sediment on basis of SQGs and DGT-labile concentrations demonstrated that Pb and Zn might pose higher risk on aquatic species. The present study confirmed that Cd isotopes were promising source tracer in environmental studies.
Show more [+] Less [-]Using food waste to cultivate safe, good-quality Sabah (giant hybrid) grouper: Dioxins and dioxin-like polychlorinated biphenyls Full text
2022
Man, Yu Bon | Zhang, Feng | Mo, Wing Yin | Chow, Ka Lai | Wong, Ming Hung
Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) in fish fillet counteract the health benefits of fish products. In this study, food waste was used as a protein alternative to replacing fishmeal commonly used in the commercial fish feed, aiming to cultivate Sabah grouper with acceptable levels of dioxins and dl-PCBs. The concentrations of dioxins and dl-PCBs, as well as the fish growth performance, were compared between the fish groups fed with food waste-based feed (FWBF) and commercial feed (Nanyu®, control). The results showed that the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) (1.22 pg/g dry weight (d.w.)) and non-ortho-dl-PCBs (13.0 pg/g d.w.) were significantly lower (p < 0.05) in the FWBF than in the control feed (commercial feed) (PCDDs: 2.35 pg/g d.w.; non-ortho-dl-PCBs: 27.2 pg/g d.w.). The growth performance of the fish group fed with the FWBF was comparable to that fed with the control feed. There were no significant differences between the WHO₂₀₀₅-TEQ values of different fish fillets (1.00, 1.11, and 1.10 pg WHO₂₀₀₅-TEQ/g d.w. for FWBF group, control feed group, and local market fish, respectively). Based on the guidelines provided by European Food Safety Authority (ESFA) and U.S. Environmental Protection Agency (USEPA), the fish fed with the FWBF were safe for human consumption (hazard index values: 0.284–0.522; cancer risk range: 2.59–2.97 × 10⁻⁵). The findings of this study suggest that food waste could serve as an alternative protein source for cultivating Sabah grouper with acceptable levels of dioxins and dl-PCBs.
Show more [+] Less [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana Full text
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Show more [+] Less [-]