Refine search
Results 1091-1100 of 2,513
Application of a Persistent Dissolved-Phase Reactive Treatment Zone for Mitigation of Mass Discharge from Sources Located in Lower-Permeability Sediments Full text
2014
Marble, J. C. | Brusseau, M. L. | Carroll, K. C. | Plaschke, M. | Fuhrig, L. | Brinker, F.
The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower-permeability strata adjacent to sand/gravel units in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for 9 years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection. These results demonstrate successful creation of a long-term, dissolved-phase reactive treatment zone that reduced mass discharge from the source. This project illustrates the application of in situ chemical oxidation as a persistent dissolved-phase reactive treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater.
Show more [+] Less [-]Affinity of Selected Elements to Individual Fractions of Soil Organic Matter Full text
2014
Šípková, A. | Száková, J. | Tlustoš, P.
The distribution of selected elements in individual fractions of organic matter from anthropogenically contaminated soils was investigated. The attention was paid especially at Hg. Furthermore, contents of S, Mg, Mn, Fe, Cu, Zn and Pb were also measured. The decomposition of organic matter to particular fractions was carried out by the resin DAX-8. Ten soil samples were collected, and the Advanced Mercury Analyzer (AMA-254) was used for the determination of the total Hg content. The two highest Hg values reached up to the concentration 10.5 mg kg⁻¹, and in the highest one, it was almost 29 mg kg⁻¹. In each extract, mercury was measured by inductively coupled plasma mass spectrometry (ICP-MS), for other elements, inductively coupled plasma optical emission spectrometry (ICP-OES) was applied. Results of the analysis show that the Hg content bound to the humic acids is inversely proportional to the content of Mg, Mn, Fe and Cu. However, this dependence was not confirmed by the samples with the mercury content above 10 mg kg⁻¹. In the case of fulvic acids, the relationship between Hg and S was observed and has again an inverse character.
Show more [+] Less [-]Rapid Screening of Heavy Metals and Trace Elements in Environmental Samples Using Portable X-Ray Fluorescence Spectrometer, A Comparative Study Full text
2014
McComb, Jacqueline Q. | Rogers, Christian | Han, Fengxiang X. | Tchounwou, Paul B.
With industrialization, great amounts of trace elements and heavy metals have been excavated and released onto the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples has been most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability, and efficiency of an X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison to the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method for measuring the total concentration of multi-elements simultaneously. Contrary to ICP-OES, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, decreased production of hazardous waste, and low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid, non-destructive screening method for contaminated soils, sediments, and biological samples containing high concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits for most trace elements as ICP-OES, but it may serve as a rapid screening tool for locating hot spots in uncontaminated field soils and sediments, such as in the US Department of Energy’s Oak Ridge site.
Show more [+] Less [-]Potential of Various Biosorbents for Zn(II) Removal Full text
2014
Kőnig-Péter, Anikó | Csudai, Csaba | Felinger, Attila | Kilár, Ferenc | Pernyeszi, Tímea
The adsorption capacities of six biosorbents (Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Chlorella vulgaris, and Spirulina platensis) for Zn(II) ions under batch condition have been studied. The optimum pH range was found to be 5.0−6.0. The amount of adsorbed Zn(II) ions were between 18 and 128 mg/g. Characterization of biosorption equilibrium was evaluated with Langmuir and Dubinin-Radushkevich model using non-linear regression. The adsorption capacities of Ca-alginate, chitosan, and immobilized Spirulina platensis-maxima cells were also determined in packed-bed column in continuous system. The results show, free Spirulina cells have the highest adsorption capacity for Zn(II) ions (128 mg/g). The chitosan-Spirulina system has slightly decreased adsorption capacity 98 mg/g per dry weight content. Thomas and Yoon-Nelson models were fitted for the evaluation of experimental data.
Show more [+] Less [-]Modeling Carbon Stocks in a Secondary Tropical Dry Forest in the Yucatan Peninsula, Mexico Full text
2014
Dai, Zhaohua | Birdsey, Richard A. | Johnson, Kristofer D. | Dupuy, Juan Manuel | Hernández Stefanoni, José Luis | Richardson, Karen
The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using observations from 276 sample plots in a tropical dry forest in the Yucatan Peninsula indicated that Forest-DNDC can be used to simulate carbon stocks for this forest with good model performance efficiency. The simulated spatial variability in carbon stocks was large, ranging from 5 to 115 Mg carbon (C) ha⁻¹, with a mean of 56.6 Mg C ha⁻¹. Carbon stocks in the forest were largely influenced by human disturbances between 1985 and 2010. Based on a comparison of the simulations with and without disturbances, carbon storage in the year 2012 with disturbance was 3.2 Mg C ha⁻¹, lower on average than without disturbance. The difference over the whole study area was 154.7 Gg C, or an 8.5 % decrease. There were substantial differences in carbon stocks simulated at individual sample plots, compared to spatially modeled outputs (200 m²plots vs. polygon simulation units) at some locations due to differences in vegetation class, stand age, and soil conditions at different resolutions. However, the difference in the regional mean of carbon stocks between plot-level simulation and spatial output was small. Soil CO₂and N₂O fluxes varied spatially; both fluxes increased with increasing precipitation, and soil CO₂also increased with an increase in biomass. The modeled spatial variability in CH₄uptake by soils was small, and the flux was not correlated with precipitation. The net ecosystem exchange (NEE) and net primary production (NPP) were nonlinearly correlated with stand age. Similar to the carbon stock simulations, different resolutions resulted in some differences in NEE and NPP, but the spatial means were similar.
Show more [+] Less [-]Decolorization and Detoxification of Wastewater Containing Industrial Dyes by Bjerkandera adusta KUC9065 Full text
2014
Choi, Yong-Seok | Seo, Ja-Yeon | Lee, Hwanhwi | Yoo, Jisu | Jung, Jinho | Kim, Jae Jin | Kim, Gyu-Hyeok
This study was performed to evaluate the ability of white-rot fungi to decolorize dye effluents. A total of 222 isolates of white-rot fungi were initially investigated to assess their ability to decolorize chemically different synthetic dyes in solid medium, resulting in selection of 25 isolates including four isolates of Berkandera adusta, five isolates of Ceriporia lacerata, three isolates of Irpex lacteus, one isolate of Perenniporia fraxinea, ten isolates of Phanerochaete spp., one isolate of Phlebia radiata, and one isolate of Porostereum spadiceum. Of the 25 isolates, B. adusta KUC9065, C. lacerata KUC8090, P. calotricha KUC8003, and P. spadiceum KUC8602 were finally selected on the basis of their ability to decolorize synthetic dyes in liquid medium, and were used to decolorize industrial effluents. B. adusta KUC9065 increased the transmittance of visible light by 71–92 %. Decolorization of wastewater by B. adusta KUC9065 was probably caused by the lignin-modifying enzymes produced by the fungus. In addition, the acute toxicity to Daphnia magna decreased from 2.5 to 2.1 and from 3.5 to 2.6 toxic units over 24 and 48 h, respectively.
Show more [+] Less [-]Removal of Remazol Brilliant Blue R From Aqueous Solution by Pirina Pretreated with Nitric Acid and Commercial Activated Carbon Full text
2014
Dağdelen, Sevgi | Acemioğlu, Bilal | Baran, Evrim | Koçer, Oğuzhan
Pirina, a waste of olive oil factory, was used as an adsorbent for the removal of remazol brilliant blue R (RBBR) from aqueous solution by adsorption process. The pirina was pretreated with HNO₃before batch adsorption experiments. The effects of contact time, initial concentration, pH, temperature, and ionic strength on dye removal were investigated. While the amount of the dye removed by the pirina was increasing with increasing initial concentration and temperature, it decreased with an increase in pH. Moreover, commercial activated carbon (CAC) was also used to compare with the pirina in removing the RBBR. The maximum amounts of the RBBR removed by the pirina and the CAC were 23.63 and 199.45 mg g⁻¹per unit mass of the adsorbents, and the removal efficiencies of them were found as 94.52 and 99.72 %, respectively. Ionic strength in the presence of NaCl and KCl had also a reducing effect on the removal efficiency. The adsorption isotherm was in the best harmony with Langmuir, Freundlich, and Temkin models. The adsorption kinetic obeyed the pseudo-second-order and the intra-particle diffusion models. The values of the r²from the pseudo-second-order kinetic and intra-particle diffusion were between 0.984–0.999 and 0.85–0.996, respectively. From thermodynamic studies, it was seen that the adsorption was of spontaneous and endothermic nature. The values of ΔG° of the adsorption were between −3,218 and −8,867 J mol⁻¹. The values of ΔH° and ΔS° were 50,134 J mol⁻¹and 179 J mol⁻¹ K⁻¹, respectively. Moreover, SEM and FT-IR studies were also performed.
Show more [+] Less [-]Occurrence of Micro-pollutants in a Soil–Radish System Irrigated with Several Types of Treated Domestic Wastewater Full text
2014
Petousi, I. | Fountoulakis, M. S. | Tzortzakis, N. | Dokianakis, S. | Stentiford, E. I. | Manios, T.
During this study, the effect of applying several types of treated domestic wastewater on the translocation and accumulation of organic and inorganic micropollutants in soil and radish plants (Raphanus sativus L.) was examined. Primary (PTW), secondary (STW) and tertiary (TTW) treated wastewater as well as tap water (TW) were used for the irrigation of radish plants for a period (transplantating and harvesting) of 67 days. Higher concentrations of polycyclic aromatic hydrocarbons (PAHs) were observed in soils irrigated with PTW. The concentration of PAHs in radish roots ranged between 107.6 ± 12.1 μg/kg for plants irrigated with TTW and 124.1 ± 17.7 μg/kg for plants irrigated with PTW. The root concentration factors (RCFs) expressed as the ratio of PAH concentration in the root mass (dry weight) to the residual concentration in the soil varied from 1.6 to 1.9 indicating a higher accumulation of PAHs in the edible part of radishes than soil. Heavy metals were not detected in the wastewaters utilised and, as a result, no accumulation was found in either the soil or plants in comparison with tap water. RCFs for heavy metals were calculated between 0.91 and 0.99, 0.49 and 0.66, 0.004 and 0.005 for Cu, Zn and Ni, respectively. The results showed that radishes have the ability to concentrate PAHs when they are present in the wastewater and this could have associated health risks.
Show more [+] Less [-]Photoredox of Cr(III)–Malate Complex and Its Impacting Factors Full text
2014
Yang, Feng | Li, Hui | Zhang, Jing | Lan, Yeqing
The transformation of less toxic Cr(III) species to harmful Cr(VI) is worth concerning. Compared with free Cr(III), however, the photo-oxidation of Cr(III)–organic acid complexes is seldom reported. In this study, Cr(III)–malate complex was synthesized and purified, and its photo-oxidation was investigated to reveal the potential conversion pathway of Cr(III) to Cr(VI). The results indicated that Cr(III)–malate complex could be gradually photo-oxidized to Cr(VI) through a ligand–metal charge transfer path. Higher pH and stronger light intensity promoted the conversion process. A 50-μM Cr(III)–malate complex was almost completely oxidized to Cr(VI) within 420-min irradiation of 500 W medium-pressure mercury lamp at pH 12. The introduction of H₂O₂, considered as a direct source of hydroxyl radicals (·OH) in the presence of Cr(II), markedly enhanced the yield of Cr(VI), and a complete oxidation of Cr(III)–malate complex (50 μM ) was realized within 20 min. Under a weak acidic condition, the production of Cr(VI) was coupled with the reduction of Cr(VI) by malic acid and its free radical generated from Cr(III)–malate complex, leading a gradual decrease in Cr(VI) concentration with the reaction.
Show more [+] Less [-]Inactivation of Microcystis aeruginosa by Electron Beam Irradiation Full text
2014
Liu, Shuyu | Zhao, Yueping | Jiang, Wenjun | Wu, Minghong | Ma, Fang
Microcystis aeruginosa, the most common toxic cyanobacterial bloom, could cause severe environmental problem by producing and releasing lethal cyanobacterial toxins to water body. This study investigated the electron beam irradiation for the inactivation of M. aeruginosa. The treatment process was monitored via the measurement of chlorophyll a concentration, optical density, photosynthesis, and antioxidant enzymes. At low electron beam irradiation dose (1.0 kGy), its performance is not desirable. High dosage of electron beam irradiation (2.0–5.0 kGy) can dramatically decrease chlorophyll a concentration, optical density, and photosynthesis rate and affect activities of antioxidant enzymes. The transmission electron microscopy measurement indicates that electron beam irradiation treatment cause significant damages on integrity and morphology. Our results demonstrate that electron beam irradiation is a promising technique for quick and efficient inactivation of M. aeruginosa in aqueous solution.
Show more [+] Less [-]