Refine search
Results 1101-1110 of 5,149
The effects of trophic transfer and environmental factors on microplastic uptake by plaice, Pleuronectes plastessa, and spider crab, Maja squinado Full text
2018
Welden, Natalie Ann | Abylkhani, Bexultan | Howarth, Leigh Michael
Microplastic pollution is apparent throughout the marine environment from deep ocean sediments to coastal habitats. Most of this is believed to originate on land, although marine activities, such as fishing and shipping, also contribute to the release and redistribution of microplastic. The relative importance of these maritime plastic sources, the manner by which they are distributed in the environment, and their effect on uptake by marine organisms are yet to be fully quantified. In this study, the relative impact of fishing activities on microplastic uptake by demersal fish and crustaceans was explored. Local fishing intensity, proximity to land and mean water velocity are compared to microplastic uptake in plaice, Pleuronectes platessa, and spider crab, Maja squinado, from the Celtic Sea. Observations were also made of microplastic contamination in ingested sand eels, Ammodytes tobianus, to establish a potential route of trophic transfer. This study is the first to identify microplastic contamination in spider crab and to document trophic transfer in the wild. Individuals were sampled from sites of varied fishing intensity in the Celtic Sea, and their stomach contents examined for the presence of microplastic. Contamination was observed in 50% of P. platessa, 42.4% of M. squinado, and 44.4% of A. tobianus. Locations of highest plastic abundance varied between P. platessa and M. squinado, indicating that different factors influence the uptake of microplastic in these two taxa. No significant link was observed between fishing effort and microplastic abundance; however, proximity to land was linked to increased abundance in M. squinado and Observations of whole prey demonstrate ongoing trophic transfer from A. tobianus to P. platessa. The lack of significant difference in microplastic abundance between predator and prey suggests that microplastic is not retained by P. platessa.
Show more [+] Less [-]Uranium toxicity to aquatic invertebrates: A laboratory assay Full text
2018
Bergmann, Melissa | Sobral, Olimpia | Pratas, João | Graça, Manuel A.S.
Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L⁻¹) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 μg L⁻¹) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC₅₀-96-h for Proasellus sp and T. fluviatilis were 142 mg L⁻¹ and 24 mg L⁻¹, respectively. Specimens of S. festiva exposed to 25 μg L⁻¹ had 47% reduced growth compared with specimens under control conditions (21.5 ± 2.9 vs. 40.6 ± 4.9 μg of mass increase animal⁻¹·day⁻¹). Respiration rates (0.40 ± 0.03 μg O₂·h⁻¹·mg animal⁻¹) and consumption rates (0.54 ± 0.05 μg μg animal⁻¹·day⁻¹; means ± SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.
Show more [+] Less [-]Using an innovative flag element ratio approach to tracking potential sources of heavy metals on urban road surfaces Full text
2018
Hong, Nian | Zhu, Panfeng | Liu, An | Zhao, Xu | Guan, Yuntao
Heavy metals deposited on urban road surfaces can be washed-off by stormwater runoff, undermining stormwater reuse safety due to their high toxicity to ecological and human health. Heavy metals on urban road surfaces come from diverse sources and tracking these sources is essential to effectively manage stormwater and hence its reuse safety. This research study developed an innovative approach to tracking sources of heavy metals using data collected in Shenzhen, China. This approach developed was based on a “flag element ratio” theory, where each source generally corresponds to a specific ratio of targeted pollutants to the flag element. It is noted that Cr, Cu, Pb, Ni, and Zn on urban roads were 19.05 mg/kg to 152.01 mg/kg, 25.66 mg/kg to 310.75 mg/kg, 15.61 mg/kg to 220.35 mg/kg, 10.65 mg/kg to 100.28 mg/kg, and 138.14 mg/kg to 1047.05 mg/kg, respectively. Gasoline emission was the main source for Cr, Ni and Pb, while braking wear and tyre wear were the major sources of Cu and Zn, respectively. Furthermore, the rankings of sources of each heavy metal in terms of their contributions were obtained by using this approach. Vehicle exhaust was found as the main contributor for all the heavy metals on urban road surfaces. This highlighted that vehicle exhaust should be seriously considered in terms of controlling heavy metal pollution on urban road surfaces and hence resulting urban road stormwater runoff.
Show more [+] Less [-]Cr(VI)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells Full text
2018
Hu, Guiping | Li, Ping | Cui, Xiaoxing | Li, Yang | Zhang, Ji | Zhai, Xinxiao | Yu, Shanfa | Tang, Shichuan | Zhao, Zuchang | Wang, Jing | Jia, Guang
To examine the mechanism of hexavalent chromium [Cr(VI)]-induced carcinogenesis, a cross-sectional study in workers with or without exposure to Cr(VI) as well as in vitro administration of Cr(VI) in 16HBE cells was conducted. We explored the associations between Cr(VI) exposure, methylation modification of DNA repair genes and their expression levels, and genetic damage. Results showed that hypermethylation of CpG sites were observed in both occupationally exposed workers and 16HBE cells administrated Cr(VI). DNA damage markers including 8-hydroxydeoxyguanosine (8-OHdG) and micronucleus frequency in Cr(VI)-exposed workers were significantly higher than the control group. Among workers, blood Cr concentration was positively correlaed with the methylation level of CpG sites in DNA repair genes including CpG6,7, CpG8, CpG9,10,11 of MGMT, CpG11 of HOGG1; CpG15,16,17, CpG19 of RAD51, and genetic damage markers including 8-OHdG and micronucleus frequency. Significant negative association between methylation levels of CpG sites in DNA repair genes and corresponding mRNA was also observed in 16HBE cells. This indicated that Cr(VI) exposure can down-regulate DNA repair gene expression by hypermethylation, which leads to enhanced genetic damage. The methylation level of these CpG sites of DNA repair genes can be potential epigenetic markers for Cr(VI)-induced DNA damage.
Show more [+] Less [-]Dried blood spots for estimating mercury exposure in birds Full text
2018
Perkins, Marie | Basu, Niladri
Mercury (Hg) is a pervasive environmental contaminant that can impair avian health, consequently there is a need to gauge exposures. Bird blood provides a measure of recent dietary exposure to Hg, but blood collection and storage can be complex and costly. Dried blood spots (DBS) may help overcome challenges of whole blood analyses, therefore, this study aimed to develop and validate a novel method to assess Hg exposure in birds using DBS. First, accuracy and precision of blood Hg concentrations for entire DBS and DBS punches were determined for white leghorn chicken (Gallus gallus domesticus) dosed with methylmercury (MeHg) via egg injection. Next, we investigated Hg stability in chicken DBS subjected to time, temperature, and humidity treatments. Lastly, we applied the method to DBS created using standard field methods from zebra finch (Taeniopygia guttatato) in the laboratory and American golden-plover (Pluvalis dominica) sampled in the field. All samples were analyzed for total Hg (THg) using direct Hg analysis. Accuracy was determined by comparing DBS concentrations with those of corresponding whole blood and reported as percent recovery. Accuracy for entire chicken DBS was 101.8 ± 5.4%, while DBS punches revealed lower recovery (87.7 ± 4.0 to 92.4 ± 4.1%). There was little effect of time, temperature, and humidity storage treatments on Hg concentrations of DBS, with mean DBS THg concentrations within ±8% of whole blood (n = 10 treatments). For zebra finch, DBS punches were more accurate (93.7 ± 9.7%) compared to entire DBS (126.8 ± 19.4%). While for American golden-plover, entire DBS resulted in the most accurate THg concentrations (111.5 ± 7.6%) compared to DBS punches (edge: 115.4 ± 18.9%, interior: 131.4 ± 16.1%). Overall, results indicate that DBS analysis using direct Hg analysis can accurately evaluate Hg exposure in birds.
Show more [+] Less [-]Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells Full text
2018
Leclercq, B. | Kluza, J. | Antherieu, S. | Sotty, J. | Alleman, L.Y. | Perdrix, E. | Loyens, A. | Coddeville, P. | Lo Guidice, J.-M. | Marchetti, P. | Garçon, G.
In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM₂.₅) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM₂.₅. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM₂.₅. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM₂.₅. Nuclear factor erythroid 2-p45 related factor 2 (NRF2) gene expression and binding activity, together with the mRNA levels of some NRF2 target genes, were directly related to the number of exposures for the lowest PM₂.₅ dose (i.e., 2 μg/cm²), but, surprisingly, inversely related to the number of exposures for the highest dose (i.e., 10 μg/cm²). There were dose- and exposure-dependent increases of both nuclear factor kappa-B (NF-κB) binding activity and NF-κB target cytokine secretion in BEAS-2B, NHBE and particularly COPD-DHBE cells exposed to PM₂.₅. Mitochondrial ROS production, membrane potential depolarization, oxidative phosphorylation, and ATP production were significantly altered in all the cell models repeatedly exposed to the highest dose of PM₂.₅. Collectively, our results indicate a cytosolic ROS overproduction, inducing oxidative damage and activating oxygen sensitive NRF2 and NF-ₖB signaling pathways for all the cell models acutely or repeatedly exposed to PM₂.₅. However, one of the important highlight of our findings is that the prolonged and repeated exposure in BEAS-2B, NHBE and in particular sensible COPD-DHBE cells further caused an oxidative boost able to partially inactivate the NRF2 signaling pathway and to critically impair mitochondrial redox homeostasis, thereby producing a persistent mitochondrial dysfunction and a lowering cell energy supply.
Show more [+] Less [-]eDNA-based bioassessment of coastal sediments impacted by an oil spill Full text
2018
Xie, Yuwei | Zhang, Xiaowei | Yang, Jianghua | Kim, Seonjin | Hong, Seongjin | Giesy, John P. | Yim, Un Hyuk | Shim, Won Joon | Yu, Hongxia | Khim, Jong Seong
Oil spills offshore can cause long-term ecological effects on coastal marine ecosystems. Despite their important ecological roles in the cycling of energy and nutrients in food webs, effects on bacteria, protists or arthropods are often neglected. Environmental DNA (eDNA) metabarcoding was applied to characterize changes in the structure of micro- and macro-biota communities of surface sediments over a 7-year period since the occurrence of Hebei Spirit oil spill on December 7, 2007. Alterations in diversities and structures of micro- and macro-biota were observed in the contaminated area where concentrations of polycyclic aromatic hydrocarbons were greater. Successions of bacterial, protists and metazoan communities revealed long-term ecological effects of residual oil. Residual oil dominated the largest cluster of the community-environment association network. Presence of bacterial families (Aerococcaceae and Carnobacteriaceae) and the protozoan family (Platyophryidae) might have conferred sensitivity of communities to oil pollution. Hydrocarbon-degrading bacterial families (Anaerolinaceae, Desulfobacteraceae, Helicobacteraceae and Piscirickettsiaceae) and algal family (Araphid pennate) were resistant to adverse effects of spilt oil. The protistan family (Subulatomonas) and arthropod families (Folsomia, Sarcophagidae Opomyzoidea, and Anomura) appeared to be positively associated with residual oil pollution. eDNA metabarcoding can provide a powerful tool for assessing effects of anthropogenic pollution, such as oil spills on sediment communities and its long-term trends in coastal marine environments.
Show more [+] Less [-]Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea: Impact of China's winter heating Full text
2018
Park, Yu-mi | Park, Kwang-su | Kim, Hyuk | Yu, Seok-min | Noh, Seam | Kim, Min-seob | Kim, Jeeyoung | Ahn, Joon-young | Lee, Min-do | Seok, Kwang-seol | Kim, Young-hee
The origin of PM₂.₅ has long been the subject of debate and stable isotopic tools have been applied to decipher. In this study, weekly PM₂.₅ samples were simultaneously collected at an urban (Seoul) and rural (Baengnyeong Island) site in Korea from January 2014 through February 2016. The seasonal variation of isotopic species showed significant seasonal differences with sinusoidal variation. The isotopic results implied that isotope species from Baengnyeong were mostly originated from coal combustion during China's winter heating seasons, whereas in summer, the isotopic patterns observed that were more likely to be from marine. In Seoul, coal combustion related isotopic patterns increased during China's winter heating period while vehicle related isotopic patterns were dominated whole seasons by default. Therefore, aerosol formation was originated from long-range transported coal combustion-related NOₓ by vehicle-related NH₃ in Seoul. δN-NH₄⁺ in Seoul showed highly enriched ¹⁵N compositions in all seasons, indicating that NH₃ from vehicle emission is the important source of NH₄⁺ in PM₂.₅ in Seoul. In addition, Baengnyeong should be consistently considered as a key region for observing the changes of isotopic features depend on the contribution of individual emissions to the atmospheric as a result of the reduction of coal consumption in China.
Show more [+] Less [-]Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia) Full text
2018
Ramírez R., Omar | Sánchez de la Campa, A.M. | Amato, F. (Fulvio) | Catacolí, Ruth A. | Rojas, Néstor Y. | Rosa, Jesús de la
Bogota registers frequent episodes of poor air quality from high PM₁₀ concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM₁₀ source contribution. A characterization of the chemical composition and the source apportionment of PM₁₀ at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO₄²⁻, Cl⁻, NO₃⁻, NH₄⁺), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM₁₀ components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM₁₀, high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM₁₀) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM₁₀ source, accounting for ∼50% of the PM₁₀. The results provided novel data about PM₁₀ chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods.
Show more [+] Less [-]Multi-element isotopic signature (C, N, Pb, Hg) in epiphytic lichens to discriminate atmospheric contamination as a function of land-use characteristics (Pyrénées-Atlantiques, SW France) Full text
2018
Barre, Julien P.G. | Deletraz, Gaëlle | Sola-Larrañaga, Cristina | Santamaría, Jesús Miguel | Bérail, Sylvain | Donard, Olivier F.X. | Amouroux, David
Multi-elemental isotopic approach associated with a land-use characteristic sampling strategy may be relevant for conducting biomonitoring studies to determine the spatial extent of atmospheric contamination sources. In this work, we investigated how the combined isotopic signatures in epiphytic lichens of two major metallic pollutants, lead (²⁰⁶Pb/²⁰⁷Pb) and mercury (δ²⁰²Hg, Δ¹⁹⁹Hg), together with the isotopic composition of nitrogen and carbon (δ¹⁵N, δ¹³C), can be used to better constrain atmospheric contamination inputs. To this end, an intensive and integrated sampling strategy based on land-use characteristics (Geographic information system, GIS) over a meso-scale area (Pyrénées-Atlantiques, SW France) was applied to more than 90 sampling stations. To depict potential relationships between such multi-elemental isotopic fingerprint and land-use characteristics, multivariate analysis was carried out. Combined Pb and Hg isotopic signatures resolved spatially the contribution of background atmospheric inputs from long range transport, from local legacy contamination (i.e. Pb) or actual industrial inputs (i.e. Pb and Hg from steel industry). Application of clustering multivariate analysis to all studied isotopes provided a new assessment of the region in accordance with the land-use characteristics and anthropogenic pressures.
Show more [+] Less [-]