Refine search
Results 1101-1110 of 4,936
Establishment of a multiplex RT-PCR assay for identification of atmospheric virus contamination in pig farms Full text
2019
Li, Han | Wei, Xiaobing | Zhang, Xiulin | Xu, Hao | Zhao, Xuesong | Zhou, Shaofeng | Huang, Shaobin | Liu, Xingyou
Spread of pathogens in pig farms not only causes transfection of diseases to other pigs or even farmers working in the farms, but also induces pollution to the living atmospheric environment of the residents around the farm. Therefore, it is necessary to establish a rapid and simple monitoring method. In this study, full genome sequences of common viruses were analyzed in pig farms, in combination with the design of primers, optimization of the reaction parameters, so as to establish a multiplex RT-PCR assay for the identification of classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus Type 2 (PCV-2), porcine pseudorabies virus (PRV) and porcine parvovirus virus (PPV), which are common in pig farms. This method has a minimal detectable concentration of 10⁻³ ng/μL, which is highly specific. Furthermore, multiplex RT-PCR was applied to examine air samples from 4 pig farms located in different cities of China. The results were in line with those obtained by single PCR. Therefore, this study can be expected to provide essential technique support for the early warning mechanism as well as disease prevention and control system against the major viruses.
Show more [+] Less [-]Impacts of microplastics on growth and health of hermatypic corals are species-specific Full text
2019
Reichert, Jessica | Arnold, Angelina L. | Hoogenboom, Mia O. | Schubert, Patrick | Wilke, Thomas
Coral reefs are increasingly affected by the consequences of global change such as increasing temperatures or pollution. Lately, microplastics (i.e., fragments < 5 mm) have been identified as another potential threat. While previous studies have assessed short-term effects caused by high concentrations of microplastics, nothing is known about the long-term effects of microplastics under realistic concentrations. Therefore, a microcosm study was conducted and corals of the genera Acropora, Pocillopora, Porites, and Heliopora were exposed to microplastics in a concentration of 200 particles L⁻¹, relating to predicted pollution levels. Coral growth and health, as well as symbiont properties were studied over a period of six months. The exposure caused species-specific effects on coral growth and photosynthetic performance. Signs of compromised health were observed for Acropora and Pocillopora, those taxa that frequently interact with the particles. The results indicate elevated energy demands in the affected species, likely due to physical contact of the corals to the microplastics. The study shows that microplastic pollution can have negative impacts on hermatypic corals. These effects might amplify corals' susceptibility to other stressors, further contributing to community shifts in coral reef assemblages.
Show more [+] Less [-]Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water Full text
2019
Li, Bing | Guo, Jianzhong | Lv, Kangle | Fan, Jiajie
A new carboxylate-functionalized hydrochar (CFHC) was successfully prepared by reaction of hydrochar with maleic anhydride under solvent-free conditions and followed by deprotonating carboxyl group of hydrochar with NaHCO₃ solution. CFHC was characterized using X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), zeta potential, Brunauer-Emmett-Teller surface area (BET) and Fourier-transform infrared spectroscopy (FTIR), and its adsorption properties and mechanisms to methylene blue (MB) and Cd(II) were investigated using the batch method. The isotherm adsorption data were accorded with Langmuir model and the maximum uptakes were 1155.57 and 90.99 mg/g for MB and Cd(II) at the temperature of 303 K, respectively. The joint analysis of batch experiments and characterizations of hydrochar confirmed the π-π interaction was accompanied by electrostatic interaction and hydrogen bond for MB adsorption, while the surface complexation and ion exchange were predominant mechanisms for Cd(II) adsorption. Therefore, a highly effective adsorbent CFHC prepared by a simple and environmentally friendly solid-phase synthesis is a promising candidate for wastewater treatment.
Show more [+] Less [-]Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health Full text
2019
Weber, R. | Bell, L. | Watson, A. | Petrlik, J. | Paun, M.C. | Vijgen, J.
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination.In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans.Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. ‘Safe’ soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk).For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist.There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Show more [+] Less [-]Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot springs as indicators of environmental intrinsic resistance and tolerance levels Full text
2019
Jardine, Jocelyn | Mavumengwana, Vuyo | Ubomba-Jaswa, Eunice
Antibiotic resistance (AR) in the environment is a growing and global concern for public health, and intrinsic AR from pristine sites untouched by pharmaceutical antibiotics is not commonly studied. Forty aerobic bacteria were isolated from water and sediment samples of hot springs in South Africa. Resistance against ten antibiotics (carbenicillin, gentamicin, kanamycin, streptomycin, tetracycline, chloramphenicol, ceftriaxone, co-trimoxazole, nalidixic acid and norfloxacin) was tested using a standard disk diffusion assay. Resistance to one or two antibiotics were equally found in 37.5%, while the remaining 22% showed complete sensitivity. Intermediate resistance was found for ceftriaxone (52.5%), nalidixic acid (37.5%) and carbenicillin (22.5%), while low levels of resistance were observed for streptomycin (5%) and kanamycin (2.5%), and total sensitivity towards the other antibiotics. Twenty-nine isolates were also tested against eight different heavy-metal salts (Al, Cr, Cu, Fe, Hg, Mn, Ni and Pb) at 10 and 40 mM. All isolates were tolerant and able to grow on ≥2 heavy-metal salts at both concentrations. No association was observed between AR and heavy metal tolerance (HMT). Based on the relatively low AR levels, hot spring sites are pristine environments reflecting baseline levels for comparison to other potentially contaminated groundwater sites.
Show more [+] Less [-]Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons Full text
2019
Li, Yingjie | Zhou, Xiaoxia | Dong, Lijie | Lai, Yujian | Li, Shasha | Liu, Rui | Liu, Jingfu
The bioavailability of a pollutant is usually evaluated based on its freely dissolved concentration (Cfree), which can be measured by negligible-depletion equilibrium extraction that is commonly suffered from long equilibration time. Herein, metal-organic framework (MOF) composites (Fe3O4@MIL-101), consists of a magnetic Fe3O4 core and a MIL-101 (Cr) MOF shell, is developed as sorbents for negligible-depletion magnetic solid-phase extraction (nd-MSPE) of freely dissolved polyaromatic hydrocarbons (PAHs) in environmental waters. The freely dissolved PAHs in 1000 mL water samples are extracted with 1.5 mg MOF composites, and desorbed with 0.9 mL of acetonitrile under sonication for 5 min. The MOF composites exclude the extraction of dissolved organic matter (DOM) and DOM-associated PAHs by size exclusion. Additionally, the combined interactions (hydrophobic, π-π and π-complexation) between PAHs and composites markedly reduced the extraction equilibration time to < 60 min for all the studied PAHs with logKOW up to 5.74. Moreover, the porous coordination polymers property of the MOFs makes the proposed nd-MSPE based on the partitioning of PAHs and thus excludes the competitive adsorption of coexisting substances. The developed nd-MSPE approach provides low detection limits (0.08–0.82 ng L−1), wide linear range (1–1000 ng L−1) and high precision (relative standard deviations (RSDs) (3.3–4.8%) in determining Cfree of PAHs. The measured Cfree of PAHs in environmental waters are in good agreement with that of verified method. Given the large diversity in structure and pore size of MOFs, various magnetic MOFs can be fabricated for task-specific nd-MSPE of analytes, presenting a prospective strategy for high-efficiency measuring Cfree of contaminants in environments.
Show more [+] Less [-]Rethinking hydrocarbons build-up on urban roads: A perspective on volatilisation under global warming scenarios Full text
2019
Wijesiri, Buddhi | Liu, An | Hong, Nian | Zhu, Panfeng | Yang, Bo | Zhao, Xu | Goonetilleke, Ashantha
Stormwater is viewed as an alternative resource to mitigate water shortages. However, stormwater reuse is constrained due to the presence of many toxic pollutants such as hydrocarbons. Effective mitigation requires robust mathematical models for stormwater quality prediction based on an understanding of pollutant processes. However, the rise in global temperatures will impose changes to pollutant processes. This study has proposed a new perspective on modelling the build-up process of hydrocarbons, with a focus on volatile organic compounds (VOCs). Among organic compounds, VOCs are the most susceptible to changes as a result of global warming due to their volatility. Seven VOCs, namely, benzene, toluene, ethylbenzene, para-xylene, meta-xylene, ortho-xylene and styrene in road dust were investigated. The outcomes are expected to lay the foundation to overcoming the limitations in current modelling approaches such as not considering the influence of temperature and volatility, on the build-up process. A new conceptualisation is proposed for the classical build-up model by mathematically defining the volatility of VOCs in terms of temperature. Uncertainty in the re-conceptualised build-up model was quantified and was used to understand the build-up patterns in the future scenarios of global warming. Results indicated that for the likely scenarios, the variability in VOCs build-up gradually increases at the beginning of the dry period and then rapidly increases after around seven days, while the build-up reaches a near-constant value in a shorter dry period, limiting the variability. These initial research outcomes need to be further investigated given the expected impacts of global warming into the future.
Show more [+] Less [-]Sampling optimization for biomonitoring metal contamination with marine macroalgae Full text
2019
García-Seoane, R. | Fernández, J.A. | Varela, Z. | Real, C. | Boquete, M.T. | Aboal, J.R.
The aim of the present study was to optimize the protocol for sampling marine macroalgae to be used to biomonitor heavy metal contamination in marine ecosystems. For this purpose, we collected 50 subsamples of the brown seaweed Fucus vesiculosus at random in each of three sampling sites (SS) and determined the concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, N, Ni, Pb, Zn and δ15N. We used semivariograms to explore the possible existence of spatial structure in the concentrations of the elements. Spatial structure was observed in 88% of the semivariograms studied, with element concentrations varying longitudinally and transversally along the SS. Using randomization techniques, we estimated that in each SS, a minimum of 30 evenly distributed subsamples should be collected within three bands parallel to the coastline (and also at different heights on the rocks if necessary), and analyzed in a single composite sample representative of the intra-SS variability.
Show more [+] Less [-]Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge Full text
2019
Xia, Hui | Chen, Jingyang | Chen, Xuemin | Huang, Kui | Wu, Ying
Vermicomposting is a green technology used in the recycling of sewage sludge using the joint action of earthworms and microorganisms. Although tetracycline is present in abundance in sewage sludge, little attention has been given to its influence on vermicomposts. This study investigated the effects of different tetracycline concentrations (0, 100, 500 and 1000 mg/kg) on the decomposition of organic matter, microbial community and antibiotic resistance genes (ARGs) during vermicomposting of spiked sludge. The results showed that 100 mg/kg tetracycline could stimulate earthworms’ growth, accompanied by the highest humification and decomposition rates of organic matter in the sludge. The abundance of active microbial cells and diversity decreased with the increase in tetracycline concentrations. The member of Bacteroidetes dominated in the tetracycline spiked treatments, especially in the higher concentration treatments. Compared to its counterparts, the addition of tetracycline significantly increased the abundances of ARGs (tetC, tetM, tetX, tetG and tetW) and Class 1 integron (int-1) by 4.7–186.9 folds and 4.25 folds, respectively. The genera of Bacillus and Mycobacterium were the possible bacterial pathogen hosts of ARGs enriched in tetracycline added group. This study suggests that higher concentration of tetracycline residual can modify microbial communities and increase the dissemination risk of ARGs for final sludge vermicompost.
Show more [+] Less [-]Preliminary study of cellular metal accumulation in two Antarctic marine microalgae – implications for mixture interactivity and dietary risk Full text
2019
Koppel, Darren J. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Localised sites in Antarctica are contaminated with mixtures of metals, yet the risk this contamination poses to the marine ecosystem is not well characterised. Recent research showed that two Antarctic marine microalgae have antagonistic responses to a mixture of five common metals (Koppel et al., 2018a). However, the metal accumulating potential and risk to secondary consumers through dietary exposure are still unknown. This study investigates cellular accumulation following exposure to a mixture of cadmium, copper, nickel, lead, and zinc for the Antarctic marine microalgae, Phaeocystis antarctica and Cryothecomonas armigera. In both microalgae, cellular cadmium, copper, and lead concentrations increased with increasing exposures while cellular nickel and zinc did not. For both microalgae, copper in the metal mixture drives inhibition of growth rate with R2 values > -0.84 for all cellular fractions in both species and the observed antagonism was likely caused by zinc competition, having significantly positive partial regressions. Metal accumulation to P. antarctica and C. armigera is likely to be toxic to consumer organisms, with low exposure concentrations resulting in cellular concentrations of 500 and 1400 × 10−18 mol Zn cell−1 and 160 and 320 × 10−18 mol Cu cell−1, respectively.
Show more [+] Less [-]