Refine search
Results 1111-1120 of 8,074
Method development and mechanistic study on direct pulsed laser irradiation process for highly effective dechlorination of persistent organic pollutants Full text
2021
Yu, Yiseul | Min, Ahreum | Jung, Hyeon Jin | Theerthagiri, Jayaraman | Lee, Seung Jun | Kwon, Ki-Young | Choi, Myong Yong
Chlorine-based compounds are typical persistent organic pollutants (POPs) that are widely generated in industrial production. This paper reports an effective and rapid pulsed laser irradiation technique for the dechlorination of hexachlorobenzene (HCB), a model pollutant, without additional catalysts or supports. The effects of the laser parameters, including the laser wavelength and power, on the dechlorination efficiency, were also investigated. The optimized results showed that a lower laser wavelength of 266 nm with 10 mJ/pulse power exhibited the highest dechlorination efficiency with 95% within 15 min. In addition, the laser beam effect was examined by designing the direct-pulsed laser single and multipath irradiation system. The results showed that improving the laser beam profile resulted in more than 95% dechlorination efficiency within 5 min. Thus, the dechlorination reaction proceeded much faster as the surface area that the laser beam came in contact with increased due to the multipath system than the single pathway. Gas chromatography identified benzene as the final product of HCB with pentachlorobenzene (PCB), tetrachlorobenzene (TeCB), trichlorobenzene (TCB), dichlorobenzene (DCB), and chlorobenzene (CB) as intermediate products. The mechanism of HCB dechlorination was explained by a comparison of theoretical calculations with the experimental results. The present study reports an advanced technique for the complete dechlorination of chlorobenzenes, which holds great application potential in environmental remediation.
Show more [+] Less [-]Urinary antibiotic level of school children in Shanghai, East China, 2017–2020 Full text
2021
Wang, Hexing | Tang, Chuanxi | Wang, Yuanping | Han, Minghui | Jiang, Feng | Jiang, Lufang | Wu, Jingui | Fu, Chaowei | Chen, Yue | Jiang, Qingwu
In recent years, an extensive exposure to antibiotics from various sources has been demonstrated in China by the biomonitoring method, but the temporal trend remains little known. The study aim was to explore the temporal trend of exposure to antibiotics and associated health risk in children. A dynamic child cohort was established in Shanghai, East China between 2017 and 2020. A total of 684 school children aged 7-11 years were included, and 280 in 2017, 279 in 2018, 288 in 2019, and 287 in 2020 participated in annual surveys. Twenty-three typical antibiotics and three metabolites from five categories (four tetracyclines, five qinolones, six macrolides, eight sulfonamides, and three phenicols), bisphenol A (BPA), and monobutyl phthalate (MBP) were determined in urine. Logistic regression analysis with generalized estimating equations was conducted to investigate the associations between various variables and the detection frequency of antibiotics in urine. Seventeen antibiotics and three metabolites were found in 51.9% of all urine samples. Compared to 2017, the detection frequency in urine reduced 31.8% in 2020 for all antibiotics (58.2% vs 39.7%) and reduced 36.8%–55.8% for tetracyclines (11.4% vs 7.0%), qinolones (34.3% vs 21.3%), macrolides (8.6% vs 3.8%), sulfonamides (16.4% vs 8.7%), and phenicols (19.3% vs 12.2%). After accounting for personal characteristics, food consumption, and urinary BPA and MBP, a decreasing temporal trend of detection frequencies was observed from 2017 to 2020 for most antibiotics. Urinary concentration, estimated daily intake, and acceptable daily intake-based health risk of antibiotics showed a temporal trend similar to detection frequency. There was an extensive exposure to antibiotics in children. However, a decreasing temporal trend occurred for the exposure during the period from 2017 to 2020. The trend was likely to be caused by decreased antibiotic use and/or decreased residues in food and/or drinking water.
Show more [+] Less [-]Simultaneous photocatalytic reduction of hexavalent chromium and oxidation of p-cresol over AgO decorated on fibrous silica zirconia Full text
2021
Aziz, F.F.A. | Jalil, A.A. | Hassan, N.S. | Fauzi, A.A. | Azami, M.S.
The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e⁻) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h⁺) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
Show more [+] Less [-]Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality Full text
2021
Dong, Youming | Song, Zhengguo | Liu, Yu | Gao, Minling
Microplastics, an emerging pollutant in the environment, have attracted extensive attention in recent years for their possible negative impact on organisms. However, direct and indirect effects of polystyrene (PS) microplastics on vegetables are still not completely known. In this study, we used red lettuce (Lactuca sativa L. Red Sails) in a hydroponic system to investigate the effects of nano- and micro-sized PS and dibutyl phthalate (DBP) on the photosynthesis and red lettuce quality. The results clearly indicated that PS reduced the bioavailability of DBP while causing a decrease in the photosynthetic parameters as well as the total chorophyll content compared to DBP alone by affecting the crystalline structure of the water-soluble chlorophyll protein. Compared with DBP monotherapy, the presence of PS significantly increased hydrogen peroxide and malondialdehyde content in the lettuce treated with DBP, indicating serious oxidative damage. Furthermore, the soluble protein and sugar content in lettuce leaves decreased with higher PS concentration and smaller PS size. It may be due to PS inhibited lettuce root and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. In contrast, nitrite content increased significantly with the induction of the glutathione-ascorbic acid cycle, indicating that the presence of PS reduced the quality of DBP-treated-red lettuce. Additionally, the nano-sized PS greatly inhibited lettuce growth and quality more than the micro-sized PS. This study described the interactions between microplastics and phthalates using molecular simulation and experimental validation to highlight the potential risks of microplastics on vegetable crop production.
Show more [+] Less [-]Mediated relationships between multiple metals exposure and fasting blood glucose by reproductive hormones in Chinese men Full text
2021
Zan, Gaohui | Li, Longman | Cheng, Hong | Huang, Lulu | Huang, Sifang | Luo, Xiaoyu | Xiao, Lili | Liu, Chaoqun | Zhang, Haiying | Mo, Zengnan | Yang, Xiaobo
Previous studies have reported metals exposure contribute to the change of fasting blood glucose (FBG) level. However, the roles of reproductive hormones in their associations have not been fully elucidated. The aim of the study is to investigate the associations of multiple serum metals with reproductive hormones, and to further explore potential roles of reproductive hormones in relationships between metals exposure and FBG level. A total of 1911 Chinese Han men were analyzed by a cross-sectional study. We measured serum levels of 22 metals by inductively coupled plasma mass spectrometer (ICP-MS). FBG, total testosterone (TT), estradiol (E2), follicle stimulating hormone (FSH), and sex hormone-binding globulin (SHBG) levels were determined. Least absolute shrinkage and selection operator (LASSO) regression models were conducted to select important metals, and restricted cubic spline models were then used to estimate dose-response relationships between selected metals and reproductive hormones. We also conducted mediation analyses to evaluate whether reproductive hormones played mediating roles in the associations between metals and FBG. We found significant inverse dose-dependent trends of copper, tin and zinc with E2; zinc with SHBG; copper and nickel with TT, while significant positive dose-dependent trend of iron with E2, respectively. Moreover, approximately inverted U-shaped associations existed between lead and SHBG, iron and TT. In addition, E2, SHBG and TT were negatively associated with FBG level. In mediation analyses, the association of copper with FBG was mediated by E2 and TT, with a mediation ratio of 10.4% and 22.1%, respectively. Furthermore, E2 and SHBG mediated the relationship of zinc with FBG, with a mediation ratio of 7.8% and 14.5%, respectively. E2 mediated 11.5% of positive relationship between tin with FBG. Our study suggested that the associations of metals exposure with FBG may be mediated by reproductive hormones.
Show more [+] Less [-]Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition Full text
2021
Chowdhary, Pankaj | Gupta, Abhishek | Gnansounou, Edgard | Pandey, Ashok | Chaturvedi, Preeti
Grape pomace (GP) is a low-value by-product that contains a significant amount of high value-added products. The huge amount of non-edible residues of GP wastes (seeds, skins, leaves and, stems) produced by wine industries causes’ environmental pollution, management issues as well as economic loss. Studies over the past 15–20 years revealed that GP could serve as a potential source for valuable bioactive compounds like antioxidants, bioactive, nutraceuticals, single-cell protein, and volatile organic compounds with an increasing scientific interest in their beneficial effects on human and animal health. However, the selection of appropriate techniques for the extraction of these compounds without compromising the stability of the extracted products is still a challenging task for the researcher. Based on the current scenario, the review mainly summarizes the novel applications of winery wastes in many sectors such as agriculture, pharmaceuticals, cosmetics, livestock fields, and also the bio-energy recovery system. We also summarize the existing information/knowledge on several green technologies for the recovery of value-added by-products. For the promotion of many emerging technologies, the entrepreneur should be aware of the opportunities/techniques for the development of high-quality value-added products. Thus, this review presents systematic information on value-added by-products that are used for societal benefits concerning the potential for human health and a sustainable environment.
Show more [+] Less [-]Emerging organic compounds in European groundwater Full text
2021
Bunting, S.Y. | Lapworth, D.J. | Crane, E.J. | Grima-Olmedo, J. | Koroša, A. | Kuczyńska, A. | Mali, N. | Rosenqvist, L. | van Vliet, M.E. | Togola, A. | López, B.
In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively.The most frequently reported category of compounds were ‘Pharmaceuticals’; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.
Show more [+] Less [-]Environmental concentrations of antifouling paint particles are toxic to sediment-dwelling invertebrates Full text
2021
Muller-Karanassos, Christina | Arundel, William | Lindeque, Penelope K. | Vance, Thomas | Turner, Andrew | Cole, Matthew
Antifouling paint particles (APPs) and associated metals have been identified in sediments around boatyards and marinas globally, but the effects of APPs on benthic organisms are largely unknown. Sub-lethal endpoints were measured following laboratory exposures of the harbour ragworm (Hediste diversicolor) and the common cockle (Cerastoderma edule) to environmentally relevant concentrations of biocidal (‘modern’ and ‘historic’) and biocide-free (‘silicone’) APPs added to clean estuarine sediment. Further, the 5-day median lethal concentrations (LC₅₀) and effects concentrations (EC₅₀) for modern biocidal APPs were calculated. For ragworms, significant decreases in weight (15.7%; p < 0.01) and feeding rate (10.2%; p < 0.05) were observed in the modern biocidal treatment; burrowing behaviour was also reduced by 29% in this treatment, but was not significant. For cockles, the modern biocidal treatment led to 100% mortality of all replicates before endpoints were measured. In cockles, there was elevated levels of metallothionein-like protein (MTLP) in response to both modern and historic biocidal treatments. Ragworms had a higher tolerance to modern APPs (5-day LC₅₀:19.9 APP g L⁻¹; EC₅₀: 14.6 g L⁻¹) compared to cockles (5-day LC₅₀: 2.3 g L⁻¹ and EC₅₀: 1.4 g L⁻¹). The results of this study indicate that modern biocidal APPs, containing high Cu concentrations, have the potential to adversely affect the health of benthic organisms at environmentally relevant concentrations. The findings highlight the need for stricter regulations on the disposal of APP waste originating from boatyards, marinas and abandoned boats.
Show more [+] Less [-]Long-term effects of atmospheric deposition on British plant species richness Full text
2021
Tipping, Edward | Davies, Jessica A.C. | Henrys, Peter A. | Jarvis, Susan G. | Smart, S. M. (Simon M.)
The effects of atmospheric pollution on plant species richness (nₛₚ) are of widespread concern. We carried out a modelling exercise to estimate how nₛₚ in British semi-natural ecosystems responded to atmospheric deposition of nitrogen (Ndₑₚ) and sulphur (Sdₑₚ) between 1800 and 2010. We derived a simple four-parameter equation relating nₛₚ to measured soil pH, and to net primary productivity (NPP), calculated with the N14CP ecosystem model. Parameters were estimated from a large data set (n = 1156) of species richness in four vegetation classes, unimproved grassland, dwarf shrub heath, peatland, and broadleaved woodland, obtained in 2007. The equation performed reasonably well in comparisons with independent observations of nₛₚ. We used the equation, in combination with modelled estimates of NPP (from N14CP) and soil pH (from the CHUM-AM hydrochemical model), to calculate changes in average nₛₚ over time at seven sites across Britain, assuming that variations in nₛₚ were due only to variations in atmospheric deposition. At two of the sites, two vegetation classes were present, making a total of nine site/vegetation combinations. In four cases, nₛₚ was affected about equally by pH and NPP, while in another four the effect of pH was dominant. The ninth site, a chalk grassland, was affected only by NPP, since soil pH was assumed constant. Our analysis suggests that the combination of increased NPP, due to fertilization by Ndₑₚ, and decreased soil pH, primarily due to Sdₑₚ, caused an average species loss of 39% (range 23–100%) between 1800 and the late 20th Century. The modelling suggests that in recent years nₛₚ has begun to increase, almost entirely due to reductions in Sdₑₚ and consequent increases in soil pH, but there are also indications of recent slight recovery from the eutrophying effects of Ndₑₚ.
Show more [+] Less [-]Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice Full text
2021
Liu, Jianhui | Li, Xiangyang | Zhou, Guiqing | Zhang, Yue | Sang, Yujian | Wang, Ji | Li, Yanbo | Ge, Wei | Sun, Zhiwei | Zhou, Xianqing
Researches have shown that silica nanoparticles (SiNPs) could reduce both the quantity and quality of sperm. However, the mechanism of toxicity induced by SiNPs in the male reproductive system is still unclear. In this study, male mice were randomly divided into a control group, and SiNPs treated group (20 mg/kg dose; n = 30 per group). Half of the mice per group were sacrificed on 35 days and the remaining on 50 days of the SiNPs exposure. SiNPs were found to decrease sperm count and mobility, increase the sperm abnormality rate, and damage the testes' structure. Furthermore, SiNPs decreased the protein levels of Protamine 1(PRM1) and elevated the histones' levels and suppressed the chromatin condensation of sperm. There was a significant reduction of the ubiquitinated H2A (ubH2A)/H2B (ubH2B) and RING finger protein 8 (RNF8) levels in the spermatid nucleus, while the RNF8 level in the spermatid cytoplasm increased evidently. The protein expression levels of PIWI-like protein 1(MIWI) in the late spermatids significantly increased on day 35 of SiNPs exposure. After 15 days of the withdrawal, the sperm parameters and protamine levels, and histones in the epididymal sperm were unrecovered; however, the changes in testis induced by SiNPs were recovered. Our results suggested that SiNPs could decrease the RNF8 level in the nucleus of spermatid either by upregulating of the expression of MIWI or by inhibiting its degradation. This resulted in the detention of RNF8 in the cytoplasm that maybe inhibited the RNF8-mediated ubiquitination of ubH2A and ubH2B. These events culminated in creating obstacles during the H2A and H2B removal and chromatin condensation, thereby suppressing the differentiation of round spermatids and chromatin remodeling, which compromised the sperm quality and quantity.
Show more [+] Less [-]