Refine search
Results 1131-1140 of 1,310
Evaluation of First Flush for Indicator Bacteria and Total Suspended Solids in Urban Stormwater Runoff Full text
2011
Hathaway, Jon M. | Hunt, W. F. (William Frederick)
An urban watershed in Raleigh, NC, was evaluated for Escherichia coli (E. coli), fecal coliform, enterococci, and total suspended solids (TSS) over 20 storm events. Sampling procedures allowed collection of multiple discrete samples per event, resulting in a relatively detailed description of microbe and TSS export for each storm. Data were evaluated to determine if a first flush effect was present for indicator bacteria and TSS in stormwater runoff. Analyses suggested there was a significant first flush effect for fecal coliform and TSS, although the first flush effect for fecal coliform was relatively weak. For E. coli and enterococci, no significant first flush effect was noted. Overall, the first flush effect was not always present for indicator bacteria and, if present, tended to be weak. The first flush effect for TSS was substantially stronger than that of any indicator bacteria. Further analysis showed poor correlation between first flush strength and antecedent climate variables, storm characteristics, and flow characteristics. However, seasonal differences for first flush strength were noted. Specifically, winter storms showed a stronger first flush effect for all indicator bacteria. The results of this study indicate that stormwater runoff presents a potential public health hazard due to elevated indicator bacteria levels for all portions of the storm event. Further, stormwater management practices cannot be expected to treat proportionally more indicator bacteria when sized for the water quality event. Instead, removal will simply be a function of a management practice’s volume capture and microbe sequestration efficiency.
Show more [+] Less [-]Measurement of Radionuclides and Gamma-Ray Dose Rate in Soil and Transfer of Radionuclides from Soil to Vegetation, Vegetable of Some Northern Area of Pakistan Using γ-Ray Spectrometry Full text
2011
Khan, Hasan M. | Ismail, M. | Khan, Khalid | Akhter, Perveen
The analysis of gamma emitters natural radionuclides, i.e., 226Ra, 232Th, and 40K, has been carried out in soil, vegetation, vegetable, and water samples collected from some Northern area of Pakistan, using gamma-ray spectrometry. The γ-ray spectrometry was carried out using high-purity Germanium detector coupled with a computer-based high-resolution multi-channel analyzer. The activity concentrations in soil ranges from 24.7 to 78.5 Bqâkg−1, 21.7 to 75.3 Bqâkg−1, and 298.5 to 570.8 Bqâkg−1 for 226Ra, 232Th, and 40K with the mean value of 42.1, 43.3, 9.5, and 418.3 Bqâkg−1, respectively. In the present analysis, 40K was the major radionuclide present in soil, vegetation, fruit, and vegetable samples. The concentration of 40K in vegetation sample varied from 646.6 to 869.6 Bqâkg−1 on dry weight basis. However, the concentration of 40K in fruit and vegetable samples varied from 34.0 to 123.3 Bqâkg−1 on fresh weight basis. In vegetation samples, along with 40K, 226Ra, and 232Th were also present in small amount. The transfer factors of these radionuclides from soil to vegetation, fruit, and vegetable were also studied. The transfer factors were found in the order: 40Kâ>â232Thâ≈â226Ra. The analysis of water samples showed activity concentrations values for all radionuclides below detection limit. The internal and external hazard indices were measured and found less than the safe limit of unity. The mean value of outdoor and indoor absorbed dose rate in air was found 64.61 and 77.54 nGyâh−1, respectively. The activity concentrations of radionuclides found in all samples during the current investigation were nominal. Therefore, they are not associated with any potential source of health hazard to the general public.
Show more [+] Less [-]Laboratory-Scale Investigation of Ferrihydrite-Modified Diatomite as a Phosphorus Co-precipitant Full text
2011
Xiong Wenhui, | Peng, Jian
The potential of ferrihydrite-modified diatomite as a phosphorus co-precipitant was investigated at a laboratory scale. Ferrihydrite-modified diatomite was demonstrated to effectively remove phosphorus from lake water as well as strongly bind phosphorus in sediment under anoxic conditions. Phosphorus removal from the lake water proceeded primarily through phosphorus adsorption onto ferrihydrite-modified diatomite and further phosphorus consumption by stimulated diatom growth. A total phosphorus removal efficiency of 85% was achieved when lake water was dosed with 250 mg/L ferrihydrite-modified diatomite; the residual total phosphorus concentration was 17.0 µg/L, which falls within the range for oligotrophic phosphorus levels. During a 30-day anoxic incubation period, total phosphorus concentrations in lake water treated with 400, 500, or 600 mg/L of ferrihydrite-modified diatomite slightly decreased and maximum total phosphorus concentrations remained below 15 µg/L. Addition of ferrihydrite-modified diatomite resulted in a marked increase in the iron-bound phosphorus fraction, a pronounced decrease in labile phosphorus and organic-bound phosphorus fractions, and stable aluminum-bound phosphorus, calcium-bound phosphorus, and residual phosphorus fractions in the anoxic sediments. Comparable iron-bound phosphorus concentration in the sediment treated by 400 mg/L of ferrihydrite-modified diatomite relative to that of the sediment treated by the combination of 400 mg/L of ferrihydrite-modified diatomite and alum solution at the concentration less than 532 mg/L indicated that ferrihydrite-modified diatomite exhibited a stable phosphorus-binding capacity when dosed at a similar amount. Ferrihydrite-modified diatomite had the potential to be used as an effective phosphorus co-precipitant.
Show more [+] Less [-]Water Quality, Water Management and the Ranger Uranium Project: Guidelines, Trends and Issues Full text
2011
Ferguson, Briony | Mudd, Gavin M.
This paper explores the regulation of water quality protection downstream from the Ranger Uranium Project in the Alligator Rivers Region, an area of high conservation value which is both World Heritage- and Ramsar-listed. Available historical monitoring data for surface water quality in Magela Creek downstream of Ranger have been compiled and analysed with respect to hydrologic data and the Australian and New Zealand Environment and Conservation Council–Agricultural and Resource Management Council of Australia and New Zealand (ANZECC–ARMCANZ) regulatory guidelines, introduced in late 2000. The paper focuses on the underlying scientific basis for the current approach and examines the complex inter-relationships of minesite water management, hydrology, climate, monitoring design, implementation and interpretation which are used to differentiate between natural variability and potential mine-derived solutes. The research found that the application of the ANZECC–ARMCANZ guidelines has clearly improved the regulation of water quality protection downstream from the Ranger Uranium Project. The scientific basis is more coherent than the previous regulatory regime; however, for U (a key parameter of indigenous Mirarr-Gundjeihmi and public concern), higher downstream concentrations are permitted than those observed through natural variability, leaving open the potential for an influence of mine-derived U loads while still being within regulatory limits. Another improvement that could be made to the current regulatory regime, to provide enhanced protection of the water quality in Magela Creek downstream of Ranger, would be to explicitly link the water quality monitoring regime with hydrologic flow conditions. The paper makes a valuable case study for the application of water quality guidelines, especially for controversial projects such as uranium mining surrounded by a World Heritage- and Ramsar-listed region on indigenous land—a context of clear relevance for many places around the world.
Show more [+] Less [-]Arsenic Mining Waste in the Catchment Area of the Madrid Detrital Aquifer (Spain) Full text
2011
Recio-Vazquez, Lorena | García Guinea, Javier | Carral, Pilar | Alvarez, Ana Maria | Garrido, Fernando
In recent years, elevated arsenic concentrations in groundwater used for drinking water supplies have been recognised in the Madrid Tertiary detrital aquifer. Although only natural causes have been suggested as the source of arsenic, this study aims to highlight that the anthropogenic contribution cannot be disregarded. During the sub-catchment's areas sampling, we found many geographical sites where natural arsenopyrite [FeAsS] originally encapsulated in pegmatite bodies and quartz veins, was artificially outcropped and dumped out, since mining wastes were scattered and exposed to weathering. Several mineral and ground specimens were collected to analyse its mineralogical and chemical composition by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectrometry and by Environmental Scanning Electron Microscope (ESEM). Both, the abundant existence of secondary phases, such as scorodite [FeAsO₄⋅2H₂O] and jarosite [KFe₃(SO₄)₂(OH)₆], much more soluble than arsenopyrite, and the lixiviation experiments of arsenopyrite in acidic media to simulate acid mine drainage (AMD) conditions, usually found in old mining districts, point to a potential risk of arsenic contamination of surface water bodies, which operate as recharged waters of the aquifer in the studied area. The elemental determination of heavy metals present in ground samples by XRF analyses, reaching up to 1,173 mg kg⁻¹ of copper, 347 mg kg⁻¹ of lead and 113,702 mg kg⁻¹ of arsenic; and the physicochemical and arsenic fractionation studies of soil samples, led us to classify the soil as Spolic Technosol (Toxic). The contamination of the area due to old mining activities could release arsenic to Madrid water supplies; accordingly, additional decontamination studies should be performed.
Show more [+] Less [-]Uptake of Hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) Strains in the Presence of Surfactants: A Cell Surface Modification Full text
2011
Kaczorek, Ewa | Olszanowski, Andrzej
The objective of this research was the evaluation of the effects of exogenous added surfactants on hydrocarbon biodegradation and on cell surface properties. Crude oil hydrocarbons are often difficult to remove from the environment because of their insolubility in water. The addition of surfactants enhances the removal of hydrocarbons by raising the solubility of these compounds. These surfactants cause them to become more vulnerable to degradation, thereby facilitating transportation across the cell membrane. The obtained results showed that the microorganism consortia of bacteria are useful biological agents within environmental bioremediation. The most effective amongst all, as regards biodegradation, were the consortia of Pseudomonas spp. and Bacillus spp. strains. The results indicated that the natural surfactants (rhamnolipides and saponins) are more effective surfactants in hydrocarbon biodegradation as compared to Triton X-100. The addition of natural surfactants enhanced the removal of hydrocarbon and diesel oil from the environment. Very promising was the use of saponins as a surfactant in hydrocarbon biodegradation. This surfactant significantly increases the organic compound biodegradation. In the case of those surfactants that could be easily adsorbed on cells of strains (e.g., rhamnolipides), a change of hydrophobicity to ca. 30-40% was noted. As the final result, an increase in hydrocarbon biodegradation was observed.
Show more [+] Less [-]Kinetic and Removal Mechanisms of Ethylbenzene from Contaminated Solutions by Chitin and Chitosan Full text
2011
Mohamed, Maryam | Ouki, Sabeha K.
In this study, the efficiency of chitin and chitosan toward the removal of ethylbenzene from aqueous solutions was investigated. Batch adsorption experiments of ethylbenzene-contaminated waters (5–200 mg/L) were carried out to evaluate the removal performance. Ethylbenzene uptake was determined from the changes in concentration, as the residual concentration was measured by gas chromatography with mass spectroscopy. The results indicated that the adsorption of ethylbenzene by chitin and chitosan were in agreement with the Langmuir isotherm, for two parameters model, and Redlich–Peterson isotherm, for three parameters model. A maximum removal percentage of 65% of ethylbenzene can be achieved using chitosan as adsorbent material. The adsorption capacity of ethylbenzene followed the order chitosan > chitin. The pseudo-second order rate model described best the adsorption kinetics of ethylbenzene for the two selected adsorbents. The kinetic studies also revealed that the pore diffusion is not the only rate controlling step in the removal of ethylbenzene. Overall, the study demonstrated that chitosan is a potential adsorbent for the removal of ethylbenzene at concentrations as high as 200 mg/L.
Show more [+] Less [-]Potential of Gonium spp. in Synthetic Reactive Dye Removal, Possible Role of Laccases and Stimulation by Triacontanol Hormone Full text
2011
Kılıç, Nur Koçberber | Karatay, Sevgi ErtuÄrul | Duygu, Ergin | Dönmez, Gönül
In this study, Gonium sp. was investigated for possible usage in dye-containing wastewater treatment. Trials were performed in media including triacontanol hormone, Reactive Orange 14, Reactive Red 120, Reactive Black 5, Remazol Brilliant Blue R (RBBR), and also hormone against the controls. Algae could remove RBBR with the highest dye removal percentage (56%) among the tested dyes. The optimum pH was 9 in removing 50 mg Lâ1 RBBR at a dye removal percentage of 47.1%. The role of laccase activity of Gonium sp. was also investigated. This first attempt in the literature showed the involvement of the enzyme in the algal growth and bioremoval process. In the presence of the plant growth hormone in the culture, the activity showed a steady and significant increase up to nearly sixfold between 5th and 14th days of incubation.
Show more [+] Less [-]Lead Isotopic and Metallic Pollution Record in Tree Rings from the Copperbelt Mining–Smelting Area, Zambia Full text
2011
Mihaljevič, Martin | Ettler, Vojtéch | Šebek, Ondřej | Sracek, Ondra | Kříbek, Bohdan | Kyncl, Tomáš | Majer, Vladimír | Veselovský, František
The composition of tree rings and soils was studied at several locations affected by smelting and transportation in the vicinity of Kitwe (Copperbelt, Zambia). The contents of cobalt (Co), copper (Cu), manganese (Mn), and lead (Pb) and the 206Pb/207Pb isotope ratios in the tree rings were interpreted in relation to potential sources of contamination such as smelter production, acidification of the environment, soil composition, raw material processing, and atmospheric suspended particulate matter (SPM). The highest Co contents in the tree rings correspond to maximum ore production in the mid-1970s. Acidification through SO2 emissions is documented in the increased Mn contents from the mid-1980s. The isotopic composition of the tree rings of the studied tree species varies in the interval 1.16–1.34 and the youngest parts of all the studied trees exhibit a low 206Pb/207Pb ratio (<1.17). The soil isotope composition varies in the range 206Pb/207Pb = 1.18–1.35. The Pb isotope composition in the soils and tree rings was formed by a combination of lithogenic Pb (206Pb/207Pb ∼ 1.3), Pb in processed ores (206Pb/207Pb ∼ 1.2), and SPM (automobile) Pb (206Pb/207Pb∼1.1). As the soils in the distant region have high 206Pb/207Pb ratios (>1.3) in the whole profile and simultaneously the youngest parts of the tree rings of tree species growing in this soil have a low 206Pb/207Pb ratio (<1.17), it can be assumed that the Pb in the youngest parts of the tree species is derived from absorption of SPM Pb through the bark rather than root uptake. The absence of Pb with a low 206Pb/207Pb ratio in soils in the distant area is probably affected by fires in the herbaceous and bush undergrowth and plant litter, which prevents Pb from biomass from entering the soil and mobilize it back into the atmosphere.
Show more [+] Less [-]Biodegradation of a Bioemulsificant Exopolysaccharide (EPS₂₀₀₃) by Marine Bacteria Full text
2011
Cappello, S. | Crisari, A. | Denaro, R. | Crescenzi, F. | Porcelli, F. | Yakimov, M. M.
The aim of the study is to analyze the biodegradation capacity of a biosurfactant exopolysaccharide (EPS₂₀₀₃) by heterotrophic marine bacterial strains. During the initial screening performed in two sites located at the harbor of Messina for analyzing the response of marine bacterial population with the presence of biosurfactant EPS₂₀₀₃, ten bacterial strains capable to degrade this substance were isolated. Between the bacterial strains isolated, two representative bacterial strains, isoDES-01, clustered with Pseudoalteromonas sp. A28 (100%), and isoDES-07, closely related to Vibrio proteolyticus (98.9%), were chosen for mineralization and respirometry test, performed to evaluate biodegradability potential of EPS₂₀₀₃. Assays of bacterial growth and measure of concentration of total RNA were also performed. More than 90% of EPS₂₀₀₃ was mineralized by the isoDE01 strain for biomass formation and respiration, while EPS₂₀₀₃ mineralization by the isoDE-07 strain was less effective, reaching 60%. This approach combines the study of the microbial community with its functional aspects (i.e., mineralization and respirometry test) allowing a more precise assessment of biosurfactant degradation. These results enhance our knowledge of microbial ecology of EPS-degrading bacteria and the mechanisms by which this biodegradation occurs. This will prove helpful for predicting the environmental fate of these compounds and for developing practical EPS₂₀₀₃ bioremediation strategies from future marine hydrocarbon pollution.
Show more [+] Less [-]