Refine search
Results 1141-1150 of 1,955
Oxidative Degradation of EDTA in Aqueous Solution by the Bimetallic Fe–Cu Full text
2013
Liu, Xin | Fan, Jin-Hong | Ma, Luming
Oxidative degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution at normal temperature and pressure by the bimetallic Fe–Cu was investigated in this work. The results showed that the removal efficiency of EDTA, total organic carbon (TOC), and total nitrogen (TN) could be about 95, 62.5, and 39 %, respectively, after 3-h reaction. The degradation of EDTA followed the pseudo-first-order reaction kinetics and would not be affected by the continuous use of bimetallic Fe–Cu. The degradation products were iminodiacetate, formate, and acetate determined by ion chromatogram. The effects of initial pH, initial concentration of EDTA, Cu content, Fe–Cu loading, and atmosphere were also investigated. Significantly, the bimetallic Fe–Cu process exhibited higher reactivity than ZEA process for the degradation of EDTA and it would not cause new heavy metal pollution in effluent. Reactive oxygen species (ROS) of OH was generated in situ. The evidence of oxidative degradation of EDTA was verified by electron spin resonance (ESR) spectroscopy and the product of para-hydroxybenzoic acid (p-HBA) by OH and benzoic acid (BA).
Show more [+] Less [-]Plant Responses to Arsenic: the Role of Nitric Oxide Full text
2013
Farnese, Fernanda S. | de Oliveira, Juraci A. | Gusman, Grasielle S. | Leão, Gabriela A. | Ribeiro, Cleberson | Siman, Luhan I. | Cambraia, José
Arsenic (As) toxicity and the effects of nitric oxide (NO), supplied as sodium nitroprusside (SNP), were analyzed in Pistia stratiotes. The plants, which were grown in nutrient solution at pH 6.5, were exposed to four treatments for 24 h: control; SNP (0.1 mg L-1); As (1.5 mg L-1); and As + SNP (1.5 and 0.1 mg L-1). As accumulated primarily in the roots, indicating the low translocation factor of P. stratiotes. The As accumulation triggered a series of changes with increasing production of reactive oxygen intermediates and damage to cell membranes. The application of SNP was able to mitigate the harmful effects of As. This attenuation was probably due to the action of the SNP as an antioxidant, reducing the superoxide anion concentration, and as a signaling agent. Acting as a signal transducer, SNP increased the activity of enzymatic antioxidants (POX, CAT, and APX) in the leaves and stimulated the entire phytochelatins biosynthetic pathway in the roots (increased sulfate uptake and synthesis of amino acids, non-proteinthiols, and phytochelatins). The As also stimulated the phytochelatins biosynthesis, but this effect was limited, probably because plants exposed only to pollutant showed small increments in the sulfate uptake. Thus, NO also may be involved in gene regulation of sulfate carriers. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]The Potential of Salvia verbenaca for Phytoremediation of Copper Mine Tailings Amended with Technosol and Compost Full text
2013
Novo, Luís A. B. | Covelo, Emma F. | González, Luis
Unreclaimed mine tailings sites are a worldwide problem. This study evaluates the potential of Salvia verbenaca for phytoremediation of copper mine tailings treated with technosol and compost. Ecophysiological results reveal the species ability to thrive in the assessed range of conditions, while the hydrogen peroxide assays exhibit the plant’s capacity to successfully respond to metal toxicity, supporting literature reports about its antioxidant capabilities. Furthermore, the results suggest a selective antioxidant response of S. verbenaca towards Cd, indicative of a protection mechanism against high concentrations of this element. Moderate concentrations of Cu in the roots, adequate translocation and bioconcentration factors, tolerance to metal toxicity, and ecophysiological characteristics classify S. verbenaca as a promising candidate for phytostabilization of mine tailings. The importance of the amendments in order to improve the overall phytostabilization performance is highlighted by the elevated correlations between the treatment properties and the extractable concentrations of trace metals.
Show more [+] Less [-]Impacts of Land Uses on Mercury Retention in Long-Time Cultivated Soils, Brazilian Amazon Full text
2013
Comte, Irina | Lucotte, Marc | Davidson, Robert | Reis de Carvalho, Claúdio José | de Assis Oliveira, Francisco | Rousseau, Guillaume X.
Impacts of Land Uses on Mercury Retention in Long-Time Cultivated Soils, Brazilian Amazon Full text
2013
Comte, Irina | Lucotte, Marc | Davidson, Robert | Reis de Carvalho, Claúdio José | de Assis Oliveira, Francisco | Rousseau, Guillaume X.
Many studies have shown the relationship between fire clearing and mercury contamination of aquatic ecosystems in the Brazilian Amazon. This study aimed at quantifying mercury content in long-time cultivated soils and at assessing the potential of a fire-free alternative clearing technique on mercury retention for long-time cultivated soils compared to traditional slash-and-burn. This case study included five land uses: one crop plot and one pasture plot cleared using slash-and-burn, one crop plot and one pasture plot cleared using chop-and-mulch, and one 40-year-old forest as a control. Low mercury concentrations were recorded in the surface horizon (24.83 to 49.48 ng g⁻¹, 0–5 cm depth). The long-time cultivation (repeated burnings) of these soils triggered large mercury losses in the surface horizon, highlighted by high enrichment factors from surface to deeper horizons. The predominant effect of repeated burnings before the experimental implementation did not let us to distinguish a positive effect of the chop-and-mulch clearing method on soil mercury retention for crops and pastures. Moreover, some processes related to the presence of the mulch may favor mercury retention (Hg volatilization decrease, cationic sites increase), while others may contribute to mercury losses (cationic competition and dislocation, mobilization by the dissolved organic matter).
Show more [+] Less [-]Impacts of land uses on mercury retention in long-time cultivated soils, Brazilian Amazon Full text
2013
Comte I. | Lucotte M. | Davidson R. | Reis de Carvalho C. | de Assis Oliveira F. | Rousseau G.X.
Many studies have shown the relationship between fire clearing and mercury contamination of aquatic ecosystems in the Brazilian Amazon. This study aimed at quantifying mercury content in long-time cultivated soils and at assessing the potential of a fire-free alternative clearing technique on mercury retention for long-time cultivated soils compared to traditional slash-and-burn. This case study included five land uses: one crop plot and one pasture plot cleared using slash-and-burn, one crop plot and one pasture plot cleared using chop-and-mulch, and one 40-year-old forest as a control. Low mercury concentrations were recorded in the surface horizon (24.83 to 49.48 ng g?1, 0–5 cm depth). The long-time cultivation (repeated burnings) of these soils triggered large mercury losses in the surface horizon, highlighted by high enrichment factors from surface to deeper horizons. The predominant effect of repeated burnings before the experimental implementation did not let us to distinguish a positive effect of the chop-and-mulch clearing method on soil mercury retention for crops and pastures. Moreover, some processes related to the presence of the mulch may favor mercury retention (Hg volatilization decrease, cationic sites increase), while others may contribute to mercury losses (cationic competition and dislocation, mobilization by the dissolved organic matter). (Résumé d'auteur)
Show more [+] Less [-]Photocatalytic Activity of 2,4,6-Trichlorophenol by TiO₂ Mesostructures: Effects of Surface Modification, Calcination Temperature and Initial pH Full text
2013
Kim, Hee-Chan | Yi, Sang-hyŏp | Kim, Dong-Ju | Choi, Jae-Woo
A titanium mesostructure was synthesized, and its surface was subsequently modified by adsorbing phosphate. The modified structure was later investigated for photocatalytic activity against the organic contaminant 2,4,6-trichlorophenol with UV irradiation. This research found that the effects of calcination temperature, phosphate concentration for surface modification, amine grafting as a function, and initial pH condition contributed to the enhanced degradation rate of the chlorinated phenol. The results of this study demonstrated an increased photocatalytic degradation rate for 2,4,6-trichlorophenol under the following conditions: (1) titanium mesostructure calcined at 600 °C; (2) adsorption from a 100 mg/L as PO₄-P solution; (3) an amine-functionalized titanium mesostructure synthesized with the molar ration of 1:0.5 (titanium mesostructure: amine group); and (4) acidic condition (pH 4) to promote efficient adsorption of phosphate. This research indicates that phosphate removal and enhanced degradation of organic contaminants could be carried out simultaneously in sewage treatment.
Show more [+] Less [-]Pesticide risk assessment and management in a globally chgangin world - report from a european interdisciplinary workshop
2013
Babut, M. | Arts, G.H.P. | Barra Caracciolo, A. | Carluer, N. | Domage, N.
Comparative Measurements and their Compliance with Standards of Total Mercury Analysis in Soil by Cold Vapour and Thermal Decomposition, Amalgamation and Atomic Absorption Spectrometry Full text
2013
Leiva G., Manuel A. | Morales Muñoz, Sandra | Segura, Rodrigo
Two methods to measure mercury concentration in soil are compared, and their compliance with international standards is determined: cold vapour atomic absorption spectrometry and thermal decomposition, amalgamation and atomic absorption spectrophotometry. The detection limit, quantification limit and uncertainty of these two analytical methods were evaluated and compared. The results indicated that thermal decomposition, amalgamation and atomic absorption spectrophotometry had a lower quantification limit and uncertainty than cold vapour atomic absorption spectrometry (quantification limit, 0.27 vs. 0.63 mg kg⁻¹; expanded uncertainty, 9.30 % vs. 10.8 %, respectively). Thermal decomposition, amalgamation and atomic absorption spectrophotometry allowed the determination of the base values for the concentration of mercury in soil recommended by international standards, achieving a lower detection limit than cold vapour atomic absorption spectrometry under the study conditions. In addition, thermal decomposition, amalgamation and atomic absorption spectrophotometry represent a more environmentally friendly alternative for mercury determination because this method uses fewer reagents and therefore generates less waste.
Show more [+] Less [-]Bacterial Diversity at Abandoned Uranium Mining and Milling Sites in Bulgaria as Revealed by 16S rRNA Genetic Diversity Study Full text
2013
Radeva, Galina | Kenarova, Anelia | Bachvarova, Velina | Flemming, Katrin | Popov, Ivan | Vassilev, Dimitar | Selenska-Pobell, Sonja
Radionuclide and heavy metal contamination influences the composition and diversity of bacterial communities, thus adversely affecting their ecological role in impacted environments. Bacterial communities from uranium and heavy metal-contaminated soil environments and mine waste piles were analyzed using 16S rRNA gene retrieval. A total of 498 clones were selected, and their 16S rDNA amplicons were analyzed by restriction fragment length polymorphism, which suggested a total of 220 different phylotypes. The phylogenetic analysis revealed Proteobacteria, Acidobacteria, and Bacteroidetes as the most common bacterial taxa for the three sites of interest. Around 20-30 % of the 16S rDNA sequences derived from soil environments were identified as Proteobacteria, which increased up to 76 % (mostly Gammaproteobacteria) in bacterial communities inhabiting the mine waste pile. Acidobacteria, known to be common soil inhabitants, dominated in less contaminated environments, while Bacteroidetes were more abundant in highly contaminated environments regardless of the type of substratum (soil or excavated gravel material). Some of the sequences affiliated with Verrucomicrobia, Actinobacteria, Chloroflexi, Planctomycetes, and Candidate division OP10 were site specific. The relationship between the level of contamination and the rate of bacterial diversity was not linear; however, the bacterial diversity was generally higher in soil environments than in the mine waste pile. It was concluded that the diversity of the bacterial communities sampled was influenced by both the degree of uranium and heavy metal contamination and the site-specific conditions. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Urban BTEX Spatiotemporal Exposure Assessment by Chemometric Expertise Full text
2013
Astel, Aleksander Maria | Giorgini, Luigi | Mistaro, Andrea | Pellegrini, Italo | Cozzutto, Sergio | Barbieri, Pierluigi
Normative regulations on benzene in fuels and urban management strategies are expected to improve air quality. The present study deals with the application of self-organizing maps (SOMs) in order to explore the spatiotemporal variations of benzene, toluene, ethylbenzene, and xylene levels in an urban atmosphere. Temperature, wind speed, and concentration values of these four volatile organic compounds were measured after passive sampling at 21 different sampling sites located in the city of Trieste (Italy) in the framework of a multi-year long-term monitoring program. SOM helps in defining pollution patterns and changes in the urban context, showing clear improvements for what concerns benzene, toluene, ethylbenzene, and xylene concentrations in air for the 2001–2008 timeframe.
Show more [+] Less [-]Influence of Immobilization of Bacterial Cells and TiO₂ on Phenol Degradation Full text
2013
Park, Mee-Ree | Kim, Dong-Ju | Choi, Jae-Woo | Lim, Dae-Soon
We investigated the influence of immobilization of bacterial cells and photocatalytic material TiO2 on the degradation of phenol by conducting batch microcosm studies consisting of suspended, immobilized cells and immobilized TiO2 at various initial phenol concentrations (50-1,000 mg L-1). Results showed that both suspended and immobilized cells were concentration-dependent, exhibiting the increasing degradation rate with the concentration of up to 500 mg L-1 above which it declined. The degradation rate of 0.39-3.47 mg L-1 h-1 by suspended cells was comparable with those of the literature. Comparison of the degradation rates between suspended, immobilized cells and immobilized TiO2 revealed that immobilized cells achieved the highest degradation rate followed by immobilized TiO2 and suspended cells due to the toxicity of phenol at the high concentration of 1,000 mg L-1. This indicates that immobilization of bacterial cells or photocatalytic materials can serve a better alternative to offer the higher degradation efficiency at high phenol concentrations. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]