Refine search
Results 1141-1150 of 1,956
Mapping Atmospheric Corrosion on Modern Materials in the Greater Athens Area Full text
2013
Kambezidis, Harry D. | Kalliampakos, George
In this study, we investigate the corrosion effects on modern materials at various sheltered and unsheltered locations in the Greater Athens Area (GAA) due to atmospheric pollution, since materials deterioration could emerge severe economic costs in the near future. The preselected materials are weathering steel, copper, bronze, zinc, and aluminum, which are mainly used in modern constructions in the GAA. The method applied in this study leads in the production of corrosion maps for GAA in the period 2000–2009 by using sophisticated geoanalytical methods together with dose–response functions for the selected materials. The corrosion effects are significant for weathering steel, moderate for copper and bronze and weak for zinc and aluminum. Also, a corrosion trend analysis is performed, which can be a very helpful tool for future protection of such materials from atmospheric pollution. The results show increasing corrosion trends for weathering steel and copper in the eastern regions of GAA, probably caused by the recent operation of the Athens International Airport at Spata, while no corrosion trends were observed to the other materials. The method applied in this work provides comprehensive results for the estimation of the impact of atmospheric corrosion on various construction materials.
Show more [+] Less [-]Composition and Integrity of PAHs, Nitro-PAHs, Hopanes, and Steranes in Diesel Exhaust Particulate Matter Full text
2013
Huang, Lei | Bohac, Stanislav V. | Chernyak, Sergei M. | Batterman, Stuart A.
Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and measurement integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultralow sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rates of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02-2 and 1 μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 C and 33 % relative humidity (RH) for 24 h, storing filter samples (without extraction) wrapped in aluminum foil at 4 C for up to 1 month, and storing filter extracts in glass vials capped with Teflon crimp seals at 4 C for up to 6 months. After conditioning filters for 24 h, 30 % of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 C for up to 1 month did not lead to significant losses, but storing extracts for 5 months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts, can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Submarine Groundwater Discharge as a Source of Mercury in the Bay of Puck, the Southern Baltic Sea Full text
2013
Szymczycha, Beata | Miotk, Michał | Pempkowiak, Janusz
Both groundwater flow and mercury concentrations in pore water and seawater were quantified in the groundwater seeping site of the Bay of Puck, southern Baltic Sea. Total dissolved mercury (HgTD) in pore water ranged from 0.51 to 4.90 ng l⁻¹. Seawater samples were characterized by elevated HgTD concentrations, ranging from 4.41 to 6.37 ng l⁻¹, while HgTD concentrations in groundwater samples ranged from 0.51 to 1.15 ng l⁻¹. High HgTD concentrations in pore water of the uppermost sediment layers were attributed to seawater intrusion into the sediment. The relationship between HgTD concentrations and salinity of pore water was non-conservative, indicating removal of dissolved mercury upon mixing seawater with groundwater. The mechanism of dissolved mercury removal was further elucidated by examining its relationships with both dissolved organic matter, dissolved manganese (Mn II), and redox potential. The flux of HgTD to the Bay of Puck was estimated to be 18.9 ± 6.3 g year⁻¹. The submarine groundwater discharge-derived mercury load is substantially smaller than atmospheric deposition and riverine discharge to the Bay of Puck. Thus, groundwater is a factor that dilutes the mercury concentrations in pore water and, as a result, dilutes the mercury concentrations in the water column.
Show more [+] Less [-]Biotreatment of Melanoidin-Containing Distillery Spent Wash Effluent by Free and Immobilized Aspergillus oryzae MTCC 7691 Full text
2013
Chavan, M. N. | Dandi, N. D. | Kulkarni, M. V. | Chaudhari, A. B.
A total of three fungal isolates from samples collected at spent wash disposal area were screened for their ability to degrade melanoidin. Distillery molasses spent wash was decolorized, and its chemical oxygen demand (COD) was reduced in immobilized fungal bioreactor (IFB) in the absence of carbon and nitrogen source using fungal mycelia of Aspergillus oryzae MTCC 7691. Fungal mycelia immobilized on baggase packed in a glass column under a batch-wise mode (1) effected removal of 75.71 +/- 0.12 % color, 51.0 +/- 0.13 % biological oxygen demand (BOD), 86.19 +/- 2.56 % COD, and 49.0 +/- 0.12 % phenolic pigments of distillery spent wash up to 25 days at 30 degrees C, while free fungal mycelia resulted in removal of 63.1 +/- 0.16 % color, 27.74 +/- 0.14 % BOD, 76.21 +/- 1.62 % COD, and 37.32 +/- 0.17 % phenolic pigments of distillery spent wash using shake flask, (2) manganese peroxidase (MnP) activity was highest (1.55 +/- 0.01 U ml(-1) min(-1)) in immobilized fungi, followed by lignin peroxidase (0.65 +/- 0.01 U ml(-1) min(-1)) and laccase activity (0.9 +/- 0.01 CU ml (1) min (1)), (3) accumulative MnP activity was highly correlated with (r=0.9216) spent wash decolorization and (r=0.7282) reduction of phenolic pigments, suggesting the presence of MnP activities in bioremediation of spent wash and (4) degradation of spent wash was confirmed by high-performance thin layer chromatography and gas chromatography-mass spectrometry analysis. Measurement of chlorophyll a content of Chlorella species cultivated on treated spent wash effluent obtained from immobilized fungal bioreactor was 5.16 +/- 0.71 mu g ml(-1) compared with 1.306 +/- 0.017 +/-mu g ml(-1) obtained with untreated spent wash. Thus, this work may provide a reasonable alternative for cost-effective bioremediation of distillery spent wash using immobilized A. oryzae on baggase fibers.
Show more [+] Less [-]Occurrence and Removal of Antiviral Drugs in Environment: A Review Full text
2013
Jain, Swati | Kumar, Pardeep | Vyas, Raj K. | Pandit, Prabhat | Dalai, Ajay K.
Antiviral drugs have been recently recognized as one of the emerging contaminants in the environment. These are discharged after therapeutic use through human excretion. Effluent containing high concentration of antiviral drugs discharged from production facilities is also a cause of concern to nearby aquatic bodies. There is an increased interest in their removal because they are highly bioactive. Some antiviral drugs are resistant to conventional methods of degradation, and there is a risk of development of antiviral resistance in humans and animals if exposed repeatedly for long periods. To date, the potential human, animal, and ecological risks associated with the discharge of these antiviral compounds to the environment are not well documented. This study presents a brief summary on occurrence, ecotoxicological risks, and physicochemical properties of antiviral drugs in the environment. The needs regarding removal, disposal, and treatment of antiviral drugs are also addressed.
Show more [+] Less [-]Individual and Mixture Toxicity of Commercial Formulations Containing Glyphosate, Metsulfuron-Methyl, Bispyribac-Sodium, and Picloram on Rhinella arenarum Tadpoles Full text
2013
Lajmanovich, Rafael C. | Junges, Celina M. | Attademo, Andrés M. | Peltzer, Paola M. | Cabagna-Zenklusen, Mariana C. | Basso, Agustín
We investigated the effects of four commercial formulations of herbicides (glyphosate [GLY], metsulfuron-methyl [MET], bispyribac-sodium [BIS], and picloram [PIC]) individually, and in three 50:50 mixtures (GLY–MET, GLY–BIS, GLY–PIC) on the common toad Rhinella arenarum (Anura: Bufonidae) tadpoles. Enzymatic parameters such as, glutathione S-transferase (GST), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) activities, as well as erythrocyte nuclear abnormalities (ENA) were studied. Interactions between herbicides in mixtures were evaluated and classified as additive, synergistic, or antagonistic. Toxicity results (48-h LC₅₀) showed that PIC was the most toxic herbicide, followed by BIS, GLY, and MET, while GLY–PIC was the most toxic mixture, followed by GLY–BIS, and GLY–MET. All commercial herbicide formulations and their mixtures significantly inhibited BChE activity in exposed tadpoles. The AChE activity was also inhibited by all herbicides and their mixtures, except by GLY–BIS. The inhibition of GST activity was only significant for GLY, MET, PIC, and GLY–MET. A significant increase in the frequency of ENA was found for tadpoles exposed either to commercial herbicide formulations or to mixtures, except for GLY. All the mixtures showed synergism for BChE activity while for AChE only the GLY–MET and GLY–PIC mixtures acted synergistically. GLY–MET showed synergism for GST, whereas for ENA, the mixture GLY–BIS was antagonistic. This study with R. arenarum tadpoles demonstrates that the interactions between three of the most intensively used herbicides in soybean crops results in synergistic effects on mortality and neurotoxicity and synergistic or additive effects in genotoxicity.
Show more [+] Less [-]Characterization of Tolerance Limit in Spirulina platensis in Relation to Nanoparticles Full text
2013
Lone, J. A. | Kumar, A. | Kundu, S. | Lone, F. A. | Suseela, M. R.
A study was carried out under in vitro conditions to characterize the growth of blue green alga, Spirulina platensis, in standard CFTRI medium containing different nanoparticles of copper oxide (CuO) (50 nm, 10 ppm), zinc oxide (ZnO) (50 nm, 10 ppm), tricalcium phosphate (TCP) (<100 nm, 90 ppm), and hydroxy apatite (HA) (<200 nm, 90 ppm). S. platensis exhibited significant higher growth in standard CFTRI medium containing 90 ppm phosphorus as nanoparticles of TCP and HA. On the other hand, calcium phosphate nanoparticles caused significant reduction in nitrate reductase activity as well as in protein content of the alga. Marked change in chlorophyll-a/b ratio was also noted when phosphorus was supplied through nano tricalcium phosphate and nano hydroxy apatite particles as compared to ionic form (K2HPO 4). The study revealed that the growth of Spirulina in the presence of ZnO nanoparticles was retarded, while no growth was observed with CuO nanoparticles. It was concluded that alga Spirulina showed much sensitivity to nanoparticles of zinc and copper (<50 nm) and was able to tolerate the toxicity of nanophosphate (tricalcium phosphate <100 nm; hydroxy apatite <200 nm). © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]In Situ Immobilization of Heavy Metals in Severely Weathered Tailings Amended with Food Waste-Based Compost and Zeolite Full text
2013
Hwang, Taewoon | Neculita, Carmen Mihaela
Biowastes and inorganic additives are acknowledged efficient but site-dependent alternatives for in situ metal immobilization. The present study evaluates food waste-based compost, a particularly abundant type of biowaste in South Korea, and zeolite as amendments for increasing pH and reducing metal leaching potential in weathered tailings from an abandoned mine site. Two types of biowaste were used: food waste compost (60 % food waste and 40 % sawdust) and market compost (50 % food waste, 10 % agricultural waste, 10 % manure, and 30 % lime). Materials were thoroughly characterized. Leaching tests were then performed in reactors filled with various mixtures of organic–inorganic amended tailings, over a 4-week period. The in situ metal immobilization efficiency of compost was evaluated based on collected leachate quality. Results indicated that both organic and inorganic materials were successful for increasing pH (from 3.0 to up to 8.1) and metal immobilization, except for Pb and As, with which leaching potential increased in most amended reactors relative to un-amended tailings (up to 43 and 158 %, respectively). Over the duration of the experiment, the cumulative reduction of metal leaching potential ranked as follows: Zn (44–91 %) > Mn (4–76 %) > Cr (20–53 %) > Fe (34–44 %) > Cd (17–43 %) > Al (0.5–24 %). Among mixtures, combined biowaste and zeolite-amended tailings showed the best performance for increasing pH (7.5–8.1) and for metal immobilization. Chemical and biological processes, such as sorption and precipitation processes, were predominant. Overall, the study provides useful data on the efficient use of food waste compost for acid mine drainage prevention in South Korea.
Show more [+] Less [-]Treatment of Oily Bilge Water from Small Fishing Vessels by PUF-Immobilized Gordonia sp. JC11 Full text
2013
Chanthamalee, Jirapat | Wongchitphimon, Teerayut | Luepromchai, Ekawan
Petroleum hydrocarbons in the bilge water of small fishing vessels are continuously released into the environment. The bilge water samples usually contained low amounts of oil-degrading bacteria; therefore, this study examines application of polyurethane foam (PUF)-immobilized Gordonia sp. JC11, a known lubricant-degrading bacterial inoculum, for the treatment of bilge water. Batch microcosm experiments showed that the PUF-immobilized bacteria were more efficient at removing oil than indigenous microorganisms and were able to remove approximately 40-50 % of the boat lubricant (1,000 mg L-1). The immobilized PUF samples rapidly adsorbed oil from the bilge water inside a small fishing vessel; however, the uninoculated PUF contained more oil than the inoculated PUF at most time points. The hydrocarbon components were also different when comparing inoculated and uninoculated PUF. These results indicate that the oil accumulated inside the PUF containing immobilized bacteria was being degraded by the Gordonia sp. JC11. However, these bacteria gradually die off after repeated oil exposure, and it is suggested that PUF-immobilized cells be replaced at timed intervals. This technique is considered simple and cheap; thus, it could be used to reduce chronic oil pollution from the release of bilge water. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]A Study on the Release of Oil from Oil-Contaminated Sediment Through Laboratory Experiments Full text
2013
Cao, Xiao-Yan | Han, Hui | Yang, Gui-Peng | Ding, Hai-Bing | Zhang, Hong-Hai
The release of heavy oil from laboratory-contaminated sediments was studied in a series of kinetic and equilibrium experiments. The kinetic curves could be interpreted by a two-compartment first-order equation including rapid and slow release steps. The slow step was dominant and the rate constant was 3 orders of magnitude smaller than for the rapid step. Equilibrium experiments for the slow step revealed that the isotherms could be described by the Freundlich equation. The release of heavy oil was found to correlate with higher contamination level, larger particle size, lower salinity, and higher temperature. The effect of coexisting surfactant on the release was also investigated and the results showed that the presence of Tween-20 promoted the process. The oil release process was endothermic and the randomness at the solid–liquid interface increased during the desorption process. The values of activation energy and standard enthalpy change indicated that this process was a physical one.
Show more [+] Less [-]