Refine search
Results 1151-1160 of 2,513
Occurrence and Ecotoxicological Risk Assessment of 14 Cytostatic Drugs in Wastewater Full text
2014
Martin, Julia | Camacho-Muñoz, Dolores | Santos, Juan Luis | Aparicio, Irene | Alonso, Esteban
Cytostatic drugs are pharmaceutically active compounds used in chemotherapy to prevent or disrupt cell division. Only a few environmental studies have been focused on cytostatic drugs, in spite of their toxicity, their increasing consumption, and their discharge into municipal sewage. This fact can be mainly due to the lack of methods for their simultaneous analysis. This research describes the occurrence of 14 cytostatic drugs in influent and effluent wastewater from four wastewater treatment plants located in Seville (Spain) during 1-year period. A preliminary environmental risk assessment was also carried out. Five cytostatic drugs (cytarabine, etoposide, gemcitabine, iphosphamide, and methotrexate) were detected in influent wastewater at concentration levels up to 464 ng L⁻¹(cytarabine). Six of them (cytarabine, doxorubicin, gemcitabine, iphosphamide, paclitaxel, and vinorelbine) were detected in effluent wastewater at concentration levels up to 190 ng L⁻¹(cytarabine). Most of the detected cytostatic drugs are not significantly removed during wastewater treatment. Nevertheless, neither ecotoxicological nor genotoxical risks are expected to occur at the measured concentrations on the aquatic environment.
Show more [+] Less [-]Removal of Bisphenol A from Aqueous Solution by Activated Carbon Derived from Oil Palm Empty Fruit Bunch Full text
2014
Wirasnita, Riry | Hadibarata, Tony | Yusoff, Abdull Rahim Mohd | Yusop, Zulkifli
The potential of the activated carbon prepared from the empty fruit bunch of oil palm wastes to remove bisphenol A (BPA) from aqueous media was investigated. The experiments were performed by varying the contact time, activated carbon dose, initial BPA concentration, and pH of the solution. The Langmuir, Freundlich, and Temkin isotherm models were employed to discuss the adsorption behavior. The equilibrium data were perfectly represented by the Langmuir isotherm with R²of 0.9985. The maximum monolayer adsorption capacity of the activated carbon was found to be 41.98 mg/g. Kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic with a rate constant of 0.3 × 10⁻³/min. The activated carbon was characterized by means of Fourier transform infrared spectrometry, Brunauer–Emmett–Teller, and field emission scanning electron microscopy analyses. The results of the present study indicate that the activated carbon prepared from the empty fruit bunch is a promising candidate as a low-cost bio-adsorbent for the removal of BPA from aqueous solution.
Show more [+] Less [-]Enhanced Mineralization of Gaseous Organic Pollutant by Photo-Oxidation Using Au-Doped TiO2/MCM-41 Full text
2014
Tangale, Nilesh P. | Belhekar, Anuja A. | Kale, Kishor B. | Awate, Shobhana V.
The synthesis, characterization, and photocatalytic evaluation of titania-loaded MCM-41 with and without Au doping are reported in the present study. The samples were characterized by powder XRD, TEM, low temperature N₂adsorption/desorption, UV–Vis, and FTIR. UV-induced vapor-phase photo-oxidation of acetone was used as a probe reaction to study the role of Au in mineralization of volatile organic compounds (VOCs), viz. acetone at different concentrations. The doping of Au in titania-loaded MCM-41 resulted in the decrease of BET surface area, total pore volume, and average pore size. UV–Vis diffuse reflectance spectra of Au-doped titania-loaded MCM-41 showed the red shift in their absorption bands compared to titania-loaded MCM-41. The activity of mineralization of acetone by photocatalysis for 2 % Au-doped titania-loaded MCM-41 was found to be ∼1.6 times higher than titania-loaded MCM-41. The presence of cocatalytic nanosized gold might be responsible for their enhanced activity on account of the delayed recombination of electron/hole pair. Although, almost complete mineralization of acetone was observed irrespective of the initial concentration of acetone in air (up to 3.72 mol%) by all the catalysts, 2 wt.% Au-doped titania-loaded MCM-41 has shown the most enhanced activity.
Show more [+] Less [-]Remediation of LNAPL Contaminated Groundwater Using Plant-Assisted Biostimulation and Bioaugmentation Methods Full text
2014
Yadav, Brijesh K | Ansari, Faiz A | Basu, Shreejita | Mathur, Anuj
Different cases of bioremediation technique were experimentally investigated here for decontaminating light non-aqueous phase liquid (LNAPL)-polluted groundwater collected from Panipat oil refinery situated in Haryana, India. Natural biodegradation of toluene, the selected LNAPL, was studied first under different varying substrate concentrations at room temperature (21.6 ± 0.3 °C). Biostimulation was then studied by mixing the polluted groundwater with a primary treated domestic wastewater for providing nutrients and other supplementary components to the native microbial population. For studying the remaining cases, small-scale wetland having plants of Canna generalis was developed in the laboratory with and without the presence of toluene in the rhizosphere. The wetland system in the presence of toluene was used here for developing the pre-grown microbial cultures to enhance the degradation rate of the LNAPL (bioaugmentation). The plant-assisted biostimulation was studied in the third case by adding the polluted groundwater with the root zone water of the wetland system developed without the presence of toluene. In the fourth case, the biostimulation was coupled with the bioaugmentation strategy by mixing the groundwater with the root zone water of the wetland system developed in the presence of toluene. A comparative account of these four different bioremediation techniques was prepared for their respective rates of biodegradation, duration of lag phases, and the total time of degradation. It was observed that the plant-assisted bioremediation techniques had better performance over the natural biodegradation and biostimulation methods of the considered LNAPL. The plant-assisted biostimulation coupled with the bioaugmentation technique needed almost no acclimatization time and accelerated the rate of degradation almost twofold compared to the natural bioremediation and, hence, is proved to be the best one among the other bioremediation techniques for decontaminating the LNAPL-polluted groundwater. The results of the conducted experiments can be used to obtain vital information on framing the engineered bioremediation planning for LNAPL-contaminated sites.
Show more [+] Less [-]Electrolysis Applied For Simulated Textile Effluents Degradation Containing Acid Red 151 and Acid Blue 40 Full text
2014
de Sousa, Mariana Lopes | Bidoia, Ederio Dino
Textile industry is responsible for a large amount of polluted water released daily, mainly due to the dyes used. This article has aimed to study and improve methodologies for degrading textile effluents containing the dyes Acid Red 151 and Acid Blue 40 using an electrolytic reactor. Different solutions were prepared for the experiments in the electrolytic reactor with a 70 % TiO₂/30 % RuO₂anode. The textile effluents underwent 0 (control), 3, and 30 min treatment intervals. A suspension of Saccharomyces cerevisiae cells was used for toxicity tests and performed at the same day that samples were collected. The same test was applied to the samples after 15 days resting in order to verify changes in toxicity. The electrolytic treatment successfully removed the color in all effluents. However, the process efficiency varies according to the dye used and the experimental conditions, such as current and NaCl concentration. Also, it was observed that treatments longer than 30 min are very toxic to S. cerevisiae cells because of the high concentration of Cl₂.
Show more [+] Less [-]Irrigating Onions and Potatoes with Chromium and Nickel: Its Effects on Catalase and Peroxidase Activities and the Cross-Contamination of Plants Full text
2014
Stasinos, Sotiris | Kostakis, Marios | Thomaidis, Nikolaos | Zabetakis, Ioannis
The scope of this study was to investigate the uptake of chromium and nickel by onions (Allium cepa) and potatoes (Solanum tuberosum) and their impact on plant enzymes catalase (CAT, E.C. 1.11.1.6) and peroxidase (POX, E.C. 1.11.1.7). A greenhouse experiment was conducted, simulating the irrigating conditions existing in the two biggest tuber-producing regions of Greece (Asopos and Messapia). Plants were cultivated for 4 months in six irrigation lines, each one supplied by an aqueous solution, containing levels of Cr(VI) and Ni(II) ranging from 0 μg/L (control) to 1,000 μg/L. Significant statistical correlations were observed between (i) the levels of heavy metals in plants, (ii) the levels of heavy metals in plants and in irrigation water, and (iii) the levels of heavy metals and the enzymatic activities in plants. The existing EU legislation has no legal limits for Ni and Cr in food, and the nutritional implications of this study are discussed.
Show more [+] Less [-]Enhancing the Reliability of Laboratory Phosphorus Filter Tests: Effect of Influent Properties and Interpretation of Effluent Parameters Full text
2014
Herrmann, Inga | Jourak, Amir | Hedström, Annelie | Lundström, Staffan | Viklander, M.
Filtration can be a convenient technique for removing phosphorus (P) at on-site wastewater treatment facilities to recycle this non-renewable element. When testing potentially suitable materials for these filters, the properties of the influent and the method used to analyse measured effluent concentrations both affect the P binding capacity determined in filter tests and therewith filter longevity predictions. At present, there is a lack of robust methods for material investigation and filter test interpretation. This study was conducted to investigate the effect of inflow PO₄–P concentrations (concentration) and hydraulic surface load (load) on P binding capacity and to analyse possible interpretations of laboratory filter tests. A 2²factorial experiment with replicates was performed on the calcium-based filter material Filtra P. The investigated concentrations ranged from 12 to 50 mg L⁻¹and loads from 419 to 1,023 L m⁻² day⁻¹. P binding capacity (calculated by mass balance including data until PO₄–P breakthrough point) was negatively affected by concentration and positively affected by load, with the effect of concentration being slightly greater. Depending on the factors' settings and on the method of evaluation (i.e. analysing all pre-saturation data or considering only pre-breakthrough results), the total measured P binding capacity varied between 2.2 and 9.0 g kg⁻¹. The part of the breakthrough curve between the breakthrough point and saturation contributed significantly to the measured P binding capacity, and it took about three times longer for the filters to become saturated than to reach breakthrough. Furthermore, a considerable amount of P that had reacted with the filter material was washed out of the filters as particle-bound P. This indicates that it is important to determine both the PO₄–P and the particle-bound P phases in the filter effluent.
Show more [+] Less [-]The Effects of Plastic Pollution on Aquatic Wildlife: Current Situations and Future Solutions Full text
2014
Sigler, Michelle
The majority of consumer products used today are comprised of some form of plastic. Worldwide, almost 280 million t of plastic materials are produced annually, much of which ends up in landfills or the oceans (Shaw and Sahni Journal of Mechanical and Civil Engineering 46–48, 2014). While plastics are lightweight, inexpensive, and durable, these same qualities can make them very harmful to wildlife, especially once they become waterborne. Once seaborne, plastics are most likely found circulating in one of five major ocean gyres: two in the Pacific, one in the Indian, and two in the Atlantic. These ocean garbage patches are not solid islands of plastic; instead, they are a turbid mix of plastics (Kostigen 2008; Livingeco 2011). Recent research conducted on the surfaces of the Great Lakes has identified similar problems (Erikson et al. Marine Pollution Bulletin, 77(1), 177–182, 2013). A growing concern is that once plastics reach the wild, they may cause entanglement, death from ingestion, and carry invasive species. Several cutting edge technologies have been piloted to monitor or gather the plastics already in our environments and convert them back into oil with hopes to reduce the damage plastics are causing to our ecosystems.
Show more [+] Less [-]Temperature enhanced effects of chlorine exposure on the health status of the sentinel organism Mytilus galloprovincialis Full text
2014
López-Galindo, Cristina | Ruiz-Jarabo, Ignacio | Rubio, Daniel | Nebot, Enrique | Solé, Montserrat | Mancera, Juan M.
Temperature enhanced effects of chlorine exposure on the health status of the sentinel organism Mytilus galloprovincialis Full text
2014
López-Galindo, Cristina | Ruiz-Jarabo, Ignacio | Rubio, Daniel | Nebot, Enrique | Solé, Montserrat | Mancera, Juan M.
It now is widely recognised that the global temperature is rising, a phenomenon which could alter the effects of pollution on wildlife. In order to assess the role of temperature and exposure to chlorine due to cooling water discharges, a battery of metabolic, oxidative stress and histological parameters were evaluated in Mytilus galloprovincialis after 15 and 30 days at 15 °C and at two increased temperatures (+5 and +10 °C). Diverse gill pathologies such as haemolymphatic sinus dilatation, an increased number of mucocytes and granulocytes as well as a lower number of cilia were observed after 30 days exposure at higher temperatures. Protein, amino acid, triglyceride and fatty acid levels decreased when the temperature increased, as a consequence of higher energetic demand. Similarly, acetylcholinesterase, catalase and glutathione S-transferase activities showed an inhibition at higher temperatures, although gill lipid peroxidation levels remained unaffected. Our results suggest that increased temperatures induce deterioration in the health status of the mussels and in their defensive capacity against a polluted environment.
Show more [+] Less [-]Temperature enhanced effects of chlorine exposure on the health status of the sentinel organism Mytilus galloprovincialis Full text
2014
López-Galindo, Cristina | Ruiz-Jarabo, Ignacio | Rubio, Daniel | Nebot, Enrique | Solé, Montserrat | Mancera, Juan Miguel
11 pages, 5 figures, 1 table | It now is widely recognised that the global temperature is rising, a phenomenon which could alter the effects of pollution on wildlife. In order to assess the role of temperature and exposure to chlorine due to cooling water discharges, a battery of metabolic, oxidative stress and histological parameters were evaluated in Mytilus galloprovincialis after 15 and 30 days at 15 °C and at two increased temperatures (+5 and + 10 °C). Diverse gill pathologies such as haemolymphatic sinus dilatation, an increased number of mucocytes and granulocytes as well as a lower number of cilia were observed after 30 days exposure at higher temperatures. Protein, amino acid, triglyceride and fatty acid levels decreased when the temperature increased, as a consequence of higher energetic demand. Similarly, acetylcholinesterase, catalase and glutathione S-transferase activities showed an inhibition at higher temperatures, although gill lipid peroxidation levels remained unaffected. Our results suggest that increased temperatures induce deterioration in the health status of themussels and in their defensive capacity against a polluted environment | This research work was funded by grant CTM2009-09527 and CSD2007-0055 to E.N. | Peer reviewed
Show more [+] Less [-]Concentrations, Accumulation, and Interactions of Redoximorphic Metals (Fe, Mn) Between Other Elements in Plants Grown on Wastewater-Irrigated and Control Soils Full text
2014
Avci, Halim | Yaman, Mehmet
Samples of soil and food plants were collected from wastewater-irrigated and control fields in the vicinity of Gaziantep, in southeast Turkey. The samples were analyzed for concentrations of several macro and trace elements to evaluate spatial differences and bioaccumulation. Emphasis was placed on redoximorphic metal (Mn/Fe) interactions. The plants and tissues that studied were corn (Zea mays) seeds, mint (Mentha) leaves, the vegetables eggplant (Solanum melongena L.) and pepper (Capsicum annuum L.), and tomato (Solanum lycopersicum L.) fruits. Concentrations of Mn and Fe in corn were generally lower than in the other food plants, while concentrations of Mn, Fe, and several elements in mint were higher in other plants. Except for mint, the Mn deficiencies in the various plant samples can be attributed to low Mn soil concentrations and the chemical and physical characteristics of the soil. Mn concentrations in both wastewater-irrigated soils and control soils were lower than what has been reported as an average for the Earth’s crust (crustal average). There was considerable variability in the concentrations of Fe, with mint having the highest concentration (650 mg/kg) and corn the lowest (20 mg/kg). Significant positive relationships (coefficient of determination (R²) >0.50) were calculated between Mn and Fe in corn (R² = 0.83). The R²for tomato was 0.43, but all other relationships were much poorer for all other species. Several elements (trace and macro) demonstrated positive relationships with Mn or Fe, although there was little across-species consistency. For example, the R²values for both Mn and Fe correlated with Zn, P, and Mg were all >0.80 for Z. mays, but were all <0.10 for Mentha. The response of the members of the Solanaceae family (eggplant, pepper, and tomato) to the presence of Mn, Fe, and other soil constituents was similar in many respects, showing differences from Z. mays and, in particular, Mentha. Similarities among related plants are not surprising and would be expected given similar physiologies and metabolic pathways. Higher uptake of certain metals may be associated with the dominant form of the element in the soil matrix. The uptake of chemicals to plant tissues is influenced by the chemical and physical characteristics of the soil and species-specific factors.
Show more [+] Less [-]