Refine search
Results 1151-1160 of 6,546
Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin Full text
2020
Li, Bei-Bei | Hu, Li-Xin | Yang, Yuan-Yuan | Wang, Tuan-Tuan | Liu, Chongxuan | Ying, Guang-Guo
Per-and polyfluoroalkyl substances (PFASs) are a group of chemicals with a wide range of industrial and commercial applications, but little is known about the contamination of PFASs in groundwater and their linkage to surface water. Here we investigated the occurrence of PFASs in groundwater and surface water at the Maozhou River basin in order to understand their contamination profiles and potential health risks. The results showed that total PFASs concentrations ranged from 9.9 to 592.2 ng/L, 50.2–339.9 ng/L and 3.7–74.3 ng/g in groundwater, river water and sediment, respectively. The detection frequencies of C4–C8 chains (C₄–C₈) PFASs were higher than C9–C14 chains PFASs in the river and groundwater. Statistical analysis showed an obvious correlation between the major contaminants in the river and those in the groundwater, indicating the potential linkage of PFASs in the groundwater to the surface water. The wastewater indicator found in groundwater suggested domestic wastewater was only one of the source for the PFASs in the river and groundwater of Maozhou River basin. Moreover, human health risk assessment showed low risks from the PFASs to the residents by drinking groundwater.
Show more [+] Less [-]A new experimental setup for measuring greenhouse gas and volatile organic compound emissions of silage during the aerobic storage period in a special silage respiration chamber Full text
2020
Krommweh, Manuel S. | Schmithausen, Alexander J. | Deeken, Hauke F. | Büscher, Wolfgang | Maack, Gerd-Christian
The aim of this study was to develop a new experimental setup to determine parallel the emissions of greenhouse gases (GHG) and volatile organic compounds (VOCs) from silage during the opening as well as the subsequent aerobic storage phase of the complete bale without wrapping film. For this purpose, a special silage respiration chamber was used in which a silage bale could be examined. The gas analysis (CO₂, methanol, ethanol, ethyl acetate) of inlet, ambient and outlet air of the silage respiration chamber was carried out by photoacoustic spectroscopy. The gas samples taken inside the bale were analysed by gas chromatography for CO₂, O₂, CH₄, and N₂O. Three silage bales (grass and lucerne) as the smallest silage unit commonly used in practice were examined. The emission behaviour of the bales was recorded during experimental periods up to 55 days. The results allow a differentiation of the outgassing processes. On the one hand, gases produced during the anaerobic ensiling process (CO₂, CH₄, N₂O) are released once in a large amount during the first experimental hours after opening the silage. On the other hand, a continuous outgassing process takes place, which is particularly true for the VOCs ethanol, methanol, and ethyl acetate, whereby VOC emissions increase with rising ambient air temperatures. In this study, the emissions during the first 600 experimental hours from the grass silage bale and lucerne silage bale were 2313 g and 2612 g CO₂, 17.6 g and 145.2 g methanol, 132.3 g and 675.9 g ethanol, 55.1 g and 66.2 g ethyl acetate, respectively. Nevertheless, the focus of this study was on the technical recording of gas concentrations inside the silage bale itself and the emissions in the ambient air of the bale. For a better interpretation of the data, additional factors should be considered in further investigations.
Show more [+] Less [-]Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States Full text
2020
Zhu, Hongkai | Kannan, Kurunthachalam
Per- and polyfluoroalkyl substances (PFASs) are used in specialty/functional textiles to impart oil, water, and stain repellency. Little is known, however, with regard to the occurrence of PFASs in textiles including infant clothing. In this study, 13 perfluoroalkyl acids (PFAAs), comprising four perfluoroalkyl sulfonic acids (PFSAs; C4–C10) and nine perfluoroalkyl carboxylic acids (PFCAs; C4–C12) were determined in 160 textile samples collected from the United States. Two extraction methods, one involving a simple solvent extraction (i.e., before oxidation) and the other with an oxidative treatment (i.e., after oxidation) of textile extracts, were used. The sum concentrations of 13 PFAAs (i.e., ∑PFAA) in textile extracts before oxidation ranged from <LOD to 63.7 μg/m² (<LOD–285 ng/g), with a mean value of 3.18 μg/m² (14.2 ng/g). ∑PFAA concentrations were the highest in flame retarded textiles (n = 23; mean: 13.3 μg/m²; 59.4 ng/g), followed by water repellent textiles (n = 56; 2.88 μg/m²; 12.9 ng/g) and infant clothes (n = 81; 0.521 μg/m²; 2.33 ng/g). C4–C10 PFCAs accounted for at least three-quarters of the ∑PFAA content in our textile samples. Textile extracts analyzed after oxidative treatment exhibited ∑PFAA concentrations 10-fold higher than those in extracts analyzed prior to oxidation, which suggested that PFAA precursors are used in textiles. Precursors that generated C4–C5 PFCAs, upon oxidation, were more prevalent than those that yielded PFOA. The calculated dermal exposure doses in infants of PFAAs present in clothes were at least 1–2 orders of magnitude below the reference doses proposed by the United States Environmental Protection Agency. This is the first time that the oxidative treatment was applied in the analysis of PFASs in textiles, and our results suggest the existence of PFCA precursors in textiles.
Show more [+] Less [-]REMOVED: Perfluoroalkyl, fluorotelomer sulfonate, and perfluorooctane sulfonamide contamination in biosolids: Composition, co-contamination and re-use implications Full text
2020
Sleep, Julie A. | Juhasz, Albert L.
This article has been removed: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been removed at the request of the Authors.This article has been retracted because the authors did not seek or receive appropriate approvals to use these materials for the purposes of this publication. The authors apologise for any inconvenience caused.
Show more [+] Less [-]Microbial degradation kinetics and molecular mechanism of 2,6-dichloro-4-nitrophenol by a Cupriavidus strain Full text
2020
Min, Jun | Xu, Lingxue | Fang, Suyun | Chen, Weiwei | Hu, Xiaoke
2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h⁻¹, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Kₘ of 3.9 ± 1.4 μM and a kcₐₜ/Kₘ of 0.12 ± 0.04 μΜ⁻¹ min⁻¹. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.
Show more [+] Less [-]miR398 is involved in the relief of phenanthrene-induced oxidative toxicity in wheat roots Full text
2020
Li, Jinfeng | Shen, Yu | Zhu, Jiahui | Liu, Shiqi | Zeng, Nengde | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and could produce oxidative toxicity to plants. Our previous study has shown that miR398 is involved in response to phenanthrene treatment by targeting CSD1 and CSD2. However, it is not clear which is essential for CSD1 and CSD2 and how miR398 changes. In this study, we performed discontinuous PAGE to separate superoxide dismutase (SOD) isozymes and found that two bands of the cytosolic Cu/Zn-SOD are induced by phenanthrene at day 5 and 7. Low expression of pri-miR398 and high expression of pre-miR398 indicate that the conversion process from pri-miR398 to pre-miR398 is impeded, which causes decrease in mature miR398. The relative expression of CSD1 is entirely up-regulated, further confirming the important role of CSD1 in response to phenanthrene exposure. Besides, the overexpression of WRKY implies its potential function in answering the call from phenanthrene stress. Therefore, it is concluded that the gene silencing of CSD1 recedes due to the biosynthesis inhibition of miR398, causing the increase of SOD activity in response to phenanthrene exposure in wheat roots. Our results are useful not only for better understanding miRNAs regulation in detoxication of reactive oxygen species, but also for alleviating the toxicity to crops caused by PAHs.
Show more [+] Less [-]Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences Full text
2020
Pedersen, Adam F. | Meyer, Danielle N. | Petriv, Anna-Maria V. | Soto, Abraham L. | Shields, Jeremiah N. | Akemann, Camille | Baker, Bridget B. | Tsou, Wei-Ling | Zhang, Yongli | Baker, Tracie R.
Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.
Show more [+] Less [-]Minor effects of dietary methylmercury on growth and reproduction of the sheepshead minnow Cyprinodon variegatus and toxicity to their offspring Full text
2020
Ye, Xiayan | Fisher, Nicholas S.
Methylmercury (MeHg) is a neurotoxic compound that is found in virtually all fish and biomagnifies in aquatic food webs. Although MeHg concentrations in marine and estuarine fish are often elevated, the impacts of MeHg on marine and estuarine fish have largely been understudied. To evaluate the impact of dietary MeHg on marine fish reproduction and effects on their offspring, female juvenile sheepshead minnows (Cyprinodon variegatus) at three months of age were experimentally exposed to MeHg-contaminated diets for two months and then paired with Hg-free males for spawning. Egg production, hatching success of embryos, time to hatching, survival of larvae, growth of larvae and swimming behavior of larvae were determined. Selenium (Se) was also measured and Se/Hg molar ratios were calculated to assess whether Se reduced MeHg toxicity. MeHg had no significant impact on fish reproduction or on survival and growth of larvae. Larvae produced by MeHg-exposed mothers had concentrations of Hg about 1 ppm (dry wt), or about 12% of that in the muscle of their mothers and consistently displayed 6–15% increased swimming speed relative to controls; the ecological significance of this moderate effect on swimming speed requires further study. The Se/Hg molar ratios in these fish, which were >1 in controls (adults and larvae) and MeHg-exposed larvae but <1 in Hg-exposed adults, did not correlate with MeHg effects. The sheepshead minnow, at a low trophic level, appears to have a high tolerance of MeHg; however, it can pass MeHg to higher trophic levels in marine ecosystems where upper level predators have MeHg concentrations sometimes exceeding US FDA safety limits of 1 ppm wet wt.
Show more [+] Less [-]Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments Full text
2020
Zhu, Chunmao | Kanaya, Yūgō | Nakajima, Ryota | Tsuchiya, Masashi | Nomaki, Hidetaka | Kitahashi, Tomo | Fujikura, Katsunori
Microplastic pollution has become an urgent issue because it adversely affects ecosystems. However, efficient methods to detect and characterize microplastic particles are still in development. By conducting a series of laboratory assessments based on near-infrared hyperspectral imaging in the wavelength range of 900–1700 nm, we report the fundamental spectral features of (i) 11 authentic plastics and (ii) 11 filter substrate materials. We found that different plastic polymers showed distinct spectral features at 1150–1250 nm, 1350–1450 nm and 1600–1700 nm, enabling their automatic recognition and identification with spectral separation algorithms. Using an improved hyperspectral imaging system, we demonstrated the detection of three types of microplastic particles, polyethylene, polypropylene and polystyrene, down to 100 μm in diameter. As a filter substrate, a gold-coated polycarbonate filter (GPC0847-BA) showed constant reflectance over 900–1700 nm and a large radiative contrast against loaded plastic particles. Glass fiber filters (GF10 and GF/F) would also be suitable substrates due to their low cost and easy commercial availability. This study provides key parameters for applying hyperspectral imaging techniques for the detection of microplastics.
Show more [+] Less [-]Microplastics but not natural particles induce multigenerational effects in Daphnia magna Full text
2020
Schür, Christoph | Zipp, Sebastian | Thalau, Tobias | Wagner, Martin
Several studies have investigated the effects of nano- and microplastics on daphnids as key freshwater species. However, while information is abundant on the acute toxicity of plastic beads, little is known regarding the multigenerational effects of irregular microplastics. In addition, a comparison of microplastics to naturally occurring particles is missing. Therefore, we investigated the effects of irregular, secondary polystyrene microplastics (<63 μm) and kaolin as natural reference particle on the survival, reproduction, and growth of Daphnia magna over four generations under food-limited conditions. Additionally, we tested the sensitivity of the neonates in each generation to a reference compound as a proxy for offspring fitness. Exposure to high concentrations of microplastics (10,000 and 2000 particles mL⁻¹) reduced daphnid survival, resulting in extinction within one and four generations, respectively. Microplastics also affected reproduction and growth. Importantly, an exposure to kaolin at similar concentrations did not induce negative effects. The sensitivity of neonates to potassium dichromate was not affected by maternal exposure to particles. Taken together, our study demonstrates that irregular PS particles are more toxic than natural kaolin in daphnids exposed over multiple generations under food limitation. Thus, our work builds towards more realistic exposure scenarios needed to better understand the impacts of microplastics on zooplankton.
Show more [+] Less [-]