Refine search
Results 1161-1170 of 1,310
Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex Full text
2011
Thepanondh, Sarawut | Varoonphan, Jarupun | Sarutichart, Panukorn | Makkasap, Thagoon
The aggregate potential health impact due to ambient volatile organic compounds on the population living in the area nearby the petrochemical industrial complex in Thailand was evaluated using measured air contaminants concentration. Airborne volatile organic compounds were collected using canisters and were analyzed by gas chromatography/mass spectrophotometer following the US.EPA TO 15 procedure. Composite samples taken over a 24-h period were collected monthly. Concentrations of volatile organic compounds (VOCs) were analyzed for a suite of 24 compounds covering both carcinogenic and non-carcinogenic substances. Results were determined and analyzed in order to evaluate their spatial variability and their potential health risk. Comparison of data from each monitoring site indicated that patterns of VOCs across sites were different from their major species and their concentrations which might be influenced by nearest potential emission sources. Carcinogenic VOCs such as benzene, 1,3butadiene, and 1,2 dichloroethane were found to be higher than their annual national standards. A potential cancer risk map was drawn based on benzene concentration in order to illustrate the zone of impact and the number in the population likely to be exposed. Results indicated that 82% of the total area, and 89.6% of the total population were within the impact area. It was suspected that high concentrations of benzene and 1,3 butadiene might be attributed by both the mobile source and the point source of emissions while 1,2 dichloroethane was suspected to be emitted from factories located upwind from the monitoring sites. Hazard quotients and hazard indexes were applied to determine chronic health effects with non-cancer endpoints. Calculated values of hazard indexes for each of the target organ systems were lower than 1, which indicated that the non-cancer chronic risk due to level of volatile organic compounds in the study area was less.
Show more [+] Less [-]Mercury (Hg) Transport in a High Arctic River in Northeast Greenland Full text
2011
Rigét, Frank | Tamstorf, Mikkel P. | Larsen, Martin M. | Søndergaard, Jens | Asmund, Gert | Falk, Julie Maria | Sigsgaard, Charlotte
In a warming climate, mercury (Hg) pathways in the Arctic can be expected to be affected. The Hg transport from the high arctic Zackenberg River Basin was assessed in 2009 in order to describe and estimate the mercury transported from land to the marine environment. A total of 95 water samples were acquired and filtered (0.4 μm pore size), and Hg concentrations were determined in both the filtered water and in the sediment. A range of other elements were also measured in the water samples. Hg concentrations in the filtered water were in general highest in the beginning of the season when the water came mainly from melted snow. THg concentrations in the sediment were in general relatively constant or slightly decreasing until mid-August, where after the concentrations increased. A principal component analysis separated the samples into spring, summer and autumn samples indicating seasonal characteristics of the patterns of element concentrations. The total amount of Hg in the sediment transported was estimated to 2.6 kg. Approximately 60% of the sediment-transported Hg occurred during a 24-h flood in the beginning of August caused by a glacial lake outburst flood. The total amount of transported dissolved Hg was estimated to 46 g, and 13% of this transport occurred during the 24-h flood. If it is assumed that the Hg transport by Zackenberg River is representative for the general glacial rivers in East Greenland, the total Hg transport into the North Atlantic from Greenland alone is approximately 4.6 tons year−1 with an estimated annual freshwater discharge of â¼440 km3.
Show more [+] Less [-]Surface Soil Geochemistry for Environmental Assessment in Kavala Area, Northern Greece Full text
2011
Papastergios, Georgios | Filippidis, Anestis | Fernandez-Turiel, Jose-Luis | Gimeno, Domingo | Sikalidis, Constantinos
The aim of the present study was to estimate the geochemical background and anomaly threshold values of the surface soils in Kavala, northern Greece. In order to reach this goal, a simple and practical procedure was applied. This procedure included the extraction of 42 major and trace elements by analytical grade HNO3 from 65 surface soil samples, analysis by inductively coupled plasma–optical emission spectrometry and inductively coupled plasma–mass spectrometry, the distribution of the elemental data displayed on probability graphs (Q-Q plots), and the visualization of the results spatially by GIS software. The results indicated that natural factors mostly influence the elevated concentrations of Al, Ca, Fe, K, Mg, Si, B, Ba, Ce, Ga, Ge, La, Li, Mn Rb, Sb, Se, Sn, Sr, Y, and Zr, while anthropogenic activities mostly influence the elevated concentrations of Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mo, Ni, Pb, Th, Ti, U, V, W, and Zn. Nevertheless, almost all the elements determined showed their elevated concentrations inside the industrial part of Kavala area, which implies that the anthropogenic activities taking place in the study area, influence importantly the spatial distribution of the elements. The methodology followed in this research seems to be an adequate alternative for soil environmental studies.
Show more [+] Less [-]Solubility and Fractionation of Different Metals in Fly Ash of Powder River Basin Coal Full text
2011
Bhattacharyya, Pradip | Reddy, Jothi | Attili, Viswatej
Coal is one of the major sources of fuel for electricity production and will continue to be used for many more decades. Thus, it is important to study the effects of disposal of coal burning byproducts including fly ash into the environment. In this study, the solubility of cations and anions from the fly ash in water is discussed. Also, the fractionation of different metals from fly ash in water is studied to understand which fraction of the metals would likely be mobilized. The results from these studies suggested that the metals in the fly ash are bound mostly to carbonate, organic, and residual fractions. Also, when water solubility data are modeled with a geochemical model (Visual MINTEQ), the saturation index predictions suggested that brucite (Mg(OH)2) and calcite (CaCO3) could potentially precipitate and mineralize the atmospheric CO2. Such mineralization process could potentially reduce the leaching of toxic metals from fly ash. Results from this study will be helpful in understanding the fate of different metals from fly ash land disposal environments.
Show more [+] Less [-]Influences of Humic Acid on Cr(VI) Removal by Zero-Valent Iron From Groundwater with Various Constituents: Implication for Long-Term PRB Performance Full text
2011
Liu, Tongzhou | Lo, Irene M. C.
A 9-month-long continuous flow column study was carried out to investigate Cr(VI) removal by Fe0 with the presence of humic acid. The study focused on the influences of humic acid promoted dissolved iron release and humic acid aggregation in Fe0 columns receiving synthetic Cr(VI) contaminated groundwater containing various components such as bicarbonate and Ca. The effects of humic acid varied significantly depending on the presence of Ca. In Ca-free columns, the presence of humic acid promoted the release of dissolved iron in the forms of soluble Fe-humic acid complexes and stabilized fine Fe (hydr)oxide colloids. As a result, the precipitation of iron corrosion products was suppressed and the accumulation of secondary minerals on Fe0 surfaces was diminished, and a slight increase in Cr(VI) removal capacity by 18% was record compared with that of humic acid-free column. In contrast, in the presence of Ca, as evidenced by the SEM and FTIR results, humic acid greatly co-aggregated with Fe (hydr)oxides and deposited on Fe0 surfaces. This largely inhibited electron transfer from Fe0 surfaces to Cr(VI) and reduced the drainable porosity of the Fe0 matrix, resulting in a significant decrease in Cr(VI) removal capacity of Fe0. The Cr(VI) removal capacity was decreased by 24.4% and 42.7% in humic acid and Ca receiving columns, with and without bicarbonate respectively, compared with that of Ca and humic acid-free column. This study yields new considerations for the performance prediction and design of Fe0 PRBs in the environments rich in natural organic matter (NOM).
Show more [+] Less [-]Adsorption of Petroleum Monoaromatics from Aqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: Systematic Study of Equilibrium Isotherms Full text
2011
Seifi, Laleh | Torabian, Ali | Kazemian, Hossein | Bidhendi, Golamreza Nabi | Azimi, Ali Akbar | Charkhi, Amir
Petroleum monoaromatics including benzene, toluene, ethylbenzene, and xylenes (BTEX) are among the notorious volatile organic compounds that contaminate water and soil. In this study, a surfactant- modified natural zeolite and its relevant granulated nanozeolites were evaluated as potential adsorbents for removal of petroleum monoaromatics from aqueous solutions. All experiments performed in batch mode at constant temperature of 20°C and pH of 6.8 for 48 h. The results revealed that the amount of BTEX uptake on granulated zeolites nanoparticles were remarkably higher than the parent micron size natural zeolite (in the order of four times). The isotherms data were analyzed using five models namely, Langmuir, Fruendlich, Elovich, Temkin, and Dubinin–Radushkevich models. It was concluded that the Langmuir model fits the experimental data. The measured adsorption capacities were 3.89 and 4.08 mg of monoaromatics per gram of hexadecyltrimethylammonium-chloride and n-cetylpyridinium bromide (CPB)-modified granulated nanozeolite, respectively. Considering the type of surfactant, adsorbents modified with CPB showed greater tendency for the adsorption of the adsorbates.
Show more [+] Less [-]Monitoring of Waste Water Samples Using the ECOTOX Biosystem and the Flagellate Alga Euglena gracilis Full text
2011
Ahmed, Hoda | Häder, Donat-Peter
In this study, a fast bioassay using the ECOTOX system to evaluate biological safety of waste water samples from different sources was performed. This biological system works full automatically to test water quality. The system uses the image analysis of movement behavior of the flagellate Euglena gracilis as a model organism. The measured parameters are cell motility, velocity, orientation (r-value, upward swimming and alignment) as well as cell form (compactness). In most tested waste samples, precision of orientation (r-value) is inhibited at concentrations which showed less effect on the other parameters. Motility and compactness were noticed to be the least inhibited parameters in response to waste water samples. The results of waste treatment plants revealed the efficiency of the used purification system. Movement as well as orientation parameters in E. gracilis showed high sensitivity toward chlorine. The order of sensitivity was motility > velocity > r-value > upward swimming with EC50 values of 0.69, 0.81, 0.85, and 1.78 mg L−1, respectively. ECOTOX with its test organism (E. gracilis) provides an automatic, fast and sensitive system to monitor water samples.
Show more [+] Less [-]Detoxification Potential of Pseudomonas fluorescens SM1 Strain for Remediation of Major Toxicants in Indian Water Bodies Full text
2011
Wasi, Samina | Tabrez, Shams | Ahmad, Masood
The present investigation was carried out to evaluate the detoxification potential of Pseudomonas fluorescens SM1 strain immobilized in calcium alginate beads for some major toxicants of Indian water bodies. The toxicants selected in this study were benzene hexachloride, mancozeb, 2,4-dichloro-phenoxyacetic acid (pesticides); phenol, catechol, cresol (phenolics); and Cd++, Cr(VI), Cu++ and Ni++ (heavy metals), which were taken as mixtures up to a concentration of roughly twice that usually found in highly polluted sites. Allium cepa phytotoxicity test, Ames fluctuation test and plasmid nicking assay were employed to estimate the phytotoxicity and genotoxicity of the model water containing the test toxicants under different combinations before and after exposure to our bioremediation-cum-detoxification system. The IC50 of the model water containing all the test toxicants, treated with the immobilized SM1 cells, was recorded to be 0.7× compared to 0.06× for the same but untreated water sample, enhancing the IC50 value by 12-fold. The IC25 of the test heavy metal mixture only could enhance from 0.07 to 1.30× (18-fold). The IC25 of the test pesticide mixture alone was increased from 0.07 to 1.71× (24-fold). The IC25 values for the mixture of test phenolics were 0.07× and 2.18× under the pre- and post-treatment conditions, respectively, exhibiting a 31-fold increase. A mutational induction (Mi) corresponding to the 0.5 value in the Ames fluctuation test was used to evaluate the mutagenicity of the test model water containing all the toxicants before and after exposure to the immobilized SM1 cell system. The Mi (0.5) value with the TA98 tester strain was estimated to be 0.08× for the untreated and 0.6× for the treated model water, whereas the same index was calculated to be 0.48× and 1.8×, respectively, for the TA100 strain. A remarkable improvement in the quality of the test water as a result of exposure to this bioremediating system was observed in terms of the absence of the linear form of the plasmid contrary to the visible linearization with the untreated model water. In view of the above findings, it is quite clear that the test of P. fluorescens SM1 strain immobilized in the calcium alginate beads could be used as an efficient system of bioremediation and for water decontamination strategies owing to its remarkable detoxification potential.
Show more [+] Less [-]Co-Ion Effect on Cr3+ Sorption by Amberlyst-15(H+) Full text
2011
Mustafa, Syed | Shah, Khizar Hussain | Naeem, Abdul | Waseem, Muhammad | Ahmad, Tauqeer | Khan, Sadullah
Cr3+ sorption on strong acid exchanger Amberlyst-15(H+) is studied as a function of time and temperature using CrCl3.6H2O and [Cr4(SO4)5(OH)2] solutions. The rate is found to be governed by a mixed diffusion for both the solutions and faster for Cl1− solution than SO4 2−. The exchange capacities are found to be higher for Cl1− system than SO4 2−. From the rate constant values, the energies of activation are calculated using the well-known Arrhenius equation. Equilibrium data is explained with the help of the Langmuir equation. The Langmuir parameters are also found to be higher for exchange from the chloride solutions. Various thermodynamic parameters (ΔHo, ΔSo, and ΔGo) for Cr3+ exchange on the resin are calculated. The ΔGo values are found to be negative while ΔHo and ΔSo are positive for both the Cr3+/Cl1− and Cr3+/SO4 2− systems. It is suggested that in case of Cl1− solutions, the metal is exchanged as Cr3+, while in case of SO4 2− solutions, the metal exchanging specie is CrSO4 +.
Show more [+] Less [-]Smooth Brome (Bromus inermis Leyss) and Soil Chemical Response to Concrete Grinding Residue Application Full text
2011
DeSutter, Tom | Goosen-Alix, Patricia | Prunty, Lyle | White, Paul, Jr | Casey, Frank
Concrete grinding residue (CGR) is a by-product created by concrete pavement maintenance operations. The application of CGR to roadside soils is not consistently regulated by state agencies across the USA, which is partially due to the lack of science-based information on its impacts to soils and plants. The objectives of this research were to determine the impact of CGR additions to soil on both smooth brome (Bromus inermis L.) biomass and plant and soil chemical parameters. In a greenhouse study, two soils were treated with two CGR by-products at 8% and 25% by weight. Shoot biomass was significantly influenced by the main effects (Soil, CGR, and Rate) and by all two-way interactions, but not consistently positively or negatively correlated. Trace metal concentrations in the shoot biomass were variable, but 68% of these metals had the same concentration or lower in the 25% CGR treatments compared with the controls. Soil pH and electrical conductivity were significantly influenced by the main effects and two-way interactions of Soil × Rate and CGR × Rate, and soil pH was significantly greater in the CGR-treated soils. Calcium, Na, Mg, Al, and S concentrations in soils were all influenced by additions of CGR, but trace metal levels in the treatments were all within the range for uncontaminated soils. Ecosystem impact of applying CGR will be dependent upon the quality of CGR and soil characteristics. Controlling the liming potential of CGR should be considered a best management practice.
Show more [+] Less [-]