Refine search
Results 1161-1170 of 1,956
Enhanced Photocatalytic Activities of Multi-Modified TiO₂ Films on Common Glass Substrates Full text
2013
Li, Fang | Zhao, Nan | Guan, Ling-xiao | Feng, Ji-jun | Yao, Ming-ming
Boric acid-treated and sulfur ion-doped multi-modified TiO₂ films with high photocatalytic activities were prepared on soda–lime glass (Na₂O · CaO · 6SiO₂) substrates via the sol–gel method. The as-prepared specimens were characterized using high-resolution field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra, UV–vis diffuse reflectance spectroscopy, and Brunauer–Emmett–Teller surface area. The photocatalytic activities of the films were evaluated by degradation of organic dyes in aqueous solutions. Compared with boric acid treatment and sulfur surface doping, the integration of both methods gave the best results. It is believed that high photocatalytic activity is correlated with the microstructure of the TiO₂ film.
Show more [+] Less [-]Removal of Textile Dyes from Aqueous Solution using Amine-Modified Plant Biomass of A. caricum: Equilibrium and Kinetic Studies Full text
2013
Adsorption potentials of native and amine-modified plant biomass of Alyssum caricum for the removal of Reactive Green 19 (RG-19) and Reactive Red 2 (RR-2) dyes from aqueous solutions were studied. The adsorbents were characterized before and after modification process using Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and potentiometric titration analysis. Modification of the surface of A. caricum biomass with hexamethylenediamine (HMDA) showed an increase of 1.18-fold in its surface area. Batch studies illustrated that dye adsorption were highly dependent on different process variables, pH, initial dye concentration of solution, adsorbent dosage, and temperature. The maximum adsorption capacities of the native and amine-modified adsorbents were 27.6 and 63.4 mg/g adsorbent for RG-19 dye and 16.5 and 36.8 mg/g adsorbent for RR-2 dye, respectively. The adsorption of both dyes on the native and amine-modified plant biomass correlated well with the Langmuir and Temkin isotherm equations as compared to Freundlich and D-R equations. The calculated thermodynamic parameters for both native and amine-modified adsorbents showed that the adsorption was feasible, spontaneous, and exothermic. The information gained from these studies was expected to indicate whether native and amine-modified adsorbents can have potential to be used for the removal of other dyes from wastewaters. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Effects of Alkyl Polyglucoside (APG) on Phytoremediation of PAH-Contaminated Soil by an Aquatic Plant in the Yangtze Estuarine Wetland Full text
2013
Liu, Fahui | Wang, Chuanhua | Liu, Xiaoyan | Liang, Xia | Wang, Qian
This research evaluated the effects of alkyl polyglucoside (APG), an environment-friendly surfactant, on the removal of anthracene (ANT), phenanthrene (PHE), and pyrene (PYR) from the soil cultivated with Scirpus triqueter, an aquatic native pioneer plant in the Yangtze estuarine wetland, China. Soils spiked with about 200 mg kg-1 of ANT, PHE, and PYR were individually irrigated with 0, 10, 20, 30, 40, 50, 100, and 150 mg L -1 of APG. Plant biomass yields, polycyclic aromatic hydrocarbons (PAHs) removal rates, soil microbial, and soil enzyme activities were quantified after 90 days' cultivation of Scirpus triqueter. Experiments demonstrated that APG has an ability to facilitate PAHs degradation at appropriate concentrations. The highest removal rate of the PAHs was observed in 40 mg L-1 APG treatment, and the removal rates increased 23, 54, and 52 %, respectively, compared to the non-amended control pots. However, the PAHs removal rate decreased to a certain extent when high concentrations of APG were added. The effect on PAHs removal in the soil could be explained by the changed levels of plant biomass, soil microbial populations, and soil enzymatic activity affected by the APG. The results suggested that the use of Scirpus triqueter combined with APG was an effective means for the phytoremediation of the PAH-contaminated soil. At the same time, APG's optimal concentration should be determined before the application in the PAH-contaminated wetlands. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Remote Sensing of Soil and Water Quality in Agroecosystems Full text
2013
de Paul Obade, Vincent | Lal, R. | Chen, Jiquan
Mismanagement of soil and water resources may not only contribute to an escalation of global poverty but also jeopardize ecosystem services, with significant costs to the environment. Although not concentrated within one geographic location (3,500 million hectares), an equivalent of approximately 24 % of the earth's land surface is degraded land, and about 2 billion people (one third of the global population) lack access to safe and affordable water for domestic purposes. It is therefore critical to develop strategies targeted at the root causes of these problems. However, to do so would require a rapid and reliable information system that has been elusive because of the complexity of the environment and the limitations of the existing tools. The increased availability and development of remote sensing and geographic data analysis tools have opened up new possibilities for exploring and monitoring environmental variables influencing key land use and soil management options. Here, we explore the major concepts, describe the constraints, and the future potential of remote sensing for mapping and providing near real-time information on soil and water quality in the context of major land use practices employed at the global scale. © 2013 Springer Science+Business Media Dordrecht.
Show more [+] Less [-]Leaves and Roots of Pistia stratiotes as Sorbent Materials for the Removal of Crude Oil from Saline Solutions Full text
2013
Sánchez-Galván, Gloria | Mercado, Francisco J. | Olguín, Eugenia J.
The removal and sorption of oil from saline solutions by leaves (L) and roots (R) of Pistia stratiotes are described for the first time. The effects of biomass dose (0.5 and 1.0 g), contact time (30, 60, 90, and 120 min), and initial oil concentration (IOC = 979 ± 9.82, 1,968 ± 8.01, 3,935 ± 40.09, 7,778 ± 196.42, and 15,694 ± 196.41 mg L⁻¹) on removal and sorption (q) were evaluated. Studies included a physicochemical characterization of the biomass. High oil removal (L = 93.71 ± 0.18 % and R = 80.93 ± 0.11 %) and sorption values (L = 2,904.47 ± 4.49 mg g⁻¹ and R = 2,324.38 ± 29.29 mg g⁻¹) were found. Such a high sorption might be related to factors such as a high surface area (128.38 ± 0.61 and 112.62 ± 5.17 m² g⁻¹, for leaves and roots, respectively), a high degree of relative hydrophobicity in the case of the leaves (71.05 ± 0.71 %), and capillary action. A high correlation was found between IOC and sorption, suggesting that the biomass could adsorb oil at IOCs higher than 15,694 ± 196.41 mg L⁻¹. The Freundlich isotherm model was found to best describe crude oil sorption by leaves and roots of P. stratiotes. These sorbent materials could be good candidates to be used during an oil spill.
Show more [+] Less [-]A Comparison Between Phragmites australis and Helianthus annuus in Chromium Phytoextraction Full text
2013
Ranieri, Ezio | Fratino, Umberto | Petruzzelli, Domenico | Borges, Alisson Carraro
A comparison of chromium abatement from irrigation water, by the use of two selected plant species, Phragmites australis and Helianthus annuus, planted in chromium-contaminated soil, was studied in the present work. The above plant species were irrigated, in a continuous mode, with 10 mg Crⱽᴵ/L contaminated tap water. More than 90 % of hexavalent chromium was reduced to trivalent chromium, from both plant species, as measured in the drainage water. Moreover, total chromium removal ranged from 54 % (Phragmites) to 70 % (Helianthus). After 90 days, the total chromium content of the contaminated soil dropped from 70 to 32 and 34 mg Cr/kgdᵣy ₛₒᵢₗ, for Helianthus and Phragmites, respectively. Helianthus accumulated higher amount of chromium in the roots (2,730 mg Cr/kgdᵣy ₜᵢₛₛᵤₑ) as compared to 1,800 mg Cr/kgdᵣy ₜᵢₛₛᵤₑ for Phragmites. Most of Crⱽᴵ was reduced to Crᴵᴵᴵ in all plant tissues, with Phragmites showing lower affinity for Crⱽᴵ reduction in the root tissues but higher chromium translocation potential from roots to stems, while Helianthus showed higher chromium translocation from roots to leaves. Toxicity effects, expressed as root growth rate inhibition, indicated that Phragmites were the most tolerant specie to chromium effects. Both plant species showed high potentialities to be used in phytoremediation installations for chromium removal.
Show more [+] Less [-]Biosorption of Cadmium from Water Using Moringa (Moringa oleifera Lam.) Seeds Full text
2013
Meneghel, Ana Paula | Gonçalves, Affonso Celso, Jr | Rubio, Fernanda | Dragunski, Douglas Cardoso | Lindino, Cleber Antonio | Strey, Leonardo
This study aimed to evaluate the efficacy of using the byproduct of Moringa oleifera Lam. seeds as an adsorbent for removal of cadmium (Cd) from contaminated water. The material characterization was performed by scanning electron microscopy, infrared spectroscopy, and point of zero charge. The effects of the adsorbent mass, solution pH, contact time, and temperature were evaluated. In the preliminary studies, the mass of adsorbent (200–1200 mg) and pH conditions (5.0, 6.0, and 7.0) were varied. The time studies were performed at 20–180 min and the temperature studies at the range of 25–65 °C. The optimal conditions of adsorption obtained were 400 mg of adsorbent mass, 7.0 pH, and 160 min contact time with the adsorbent. The isotherms of adsorption were linearized according to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) models. The results showed better fit by the Freundlich and D-R models for Cd adsorption, describing a multilayer adsorption and, according to the value of the sorption energy (E), it has chemical nature. The maximum capacity of adsorption (Q ₘ) obtained was 7.864 mg g⁻¹. For a comparative study, the activated carbon (P.A.) was used applying the same optimal conditions used in the adsorption isotherms and desorption process for the biosorbent, obtaining a Q ₘ as 32.884 mg g⁻¹. The average desorption percentage showed that adsorbents have strong interaction with the metal. Based on these results, it was concluded that the biosorbent was effective in remediation of solutions containing Cd and thus the use of this alternative material is a viable option, since it has low cost and it is a byproduct which has not undergone previous treatment.
Show more [+] Less [-]Biosorption of Pb(II) and Fe(III) from Aqueous Solutions Using Oil Palm Biomasses as Adsorbents Full text
2013
Khosravihaftkhany, Shabnam | Morad, Norhashimah | Teng, Tjoon Tow | Abdullah, Ahmad Zuhairi | Norli, Ismail
The removal of lead (II) and iron (III) from aqueous solutions using empty fruit bunch (EFB), oil palm leaves (OPL), oil palm frond (OPF), and oil palm bark (OPB) as biosorbents was investigated. The biosorbents were characterized through scanning electron microscopy, Brunauer–Emmett–Teller analysis, and Fourier transform infrared spectroscopy. Variables such as pH (2–12), biosorbent particle size (200–1,400 μm), adsorbent dosage (0.25–1.75 g/l), and agitation time (5–80 min) were investigated. The suitable pH range, particle size, adsorbent dosage, and agitation time for the removal of both metals were 5 to 6, 200 μm, 1 g/l, and 40 min, respectively. Under optimum conditions, OPB showed the highest adsorption efficiency of 80 % and 78 % for lead and iron, respectively. The adsorption equilibrium data were fitted to three adsorption isotherm models. The Langmuir isotherm showed the best result for both metals. The kinetics of the biosorption process was analyzed using pseudo-first-order and pseudo-second-order models. The latter showed a better fit for both metals. OPB biomass introduced the lowest chemical oxygen demand into the treated solution, with an average amount of 32.9 mg/l.
Show more [+] Less [-]Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA Full text
2013
Vogel, Jason R. | Griffin, Dale W. | Ip, Hon S. | Ashbolt, Nicholas J. | Moser, Matthew T. | Lu, Jingrang | Beitz, Mary K. | Ryu, Hodon | Santo Domingo, Jorge W.
Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potentially serve a significant source of bird-derived pathogens in the water/sediment and riverine environment. In 2009 and 2010, a study was completed to investigate the potential water-quality impacts of Sandhill Cranes and Snow Geese on the microbial water quality of the central Platte River during their spring migration period. Fecal material, river-bottom sediment, and water samples were collected from January through May of each year during the spring migration season of Sandhill Cranes in the Central Flyway of North America. Results indicate that several types of fecal indicator bacteria and from a range of viral, protozoan, and bacterial pathogens, Campylobacter jejuni were present in Sandhill Crane excreta, and at significantly higher frequency and densities in water and sediments when the Sandhill Cranes were present, particularly during evening roosts within the Platte River environment. Therefore, further investigation of the health significance of avian pathogens is warranted for the Platte River in Central Nebraska during migration of Sandhill Cranes and other waterfowl.
Show more [+] Less [-]Differences in the Quality of Seepage Water and Runoff Caused by Plant Community and Grazing at an Alpine Site in Hol, Southern Norway Full text
2013
Martinsen, Vegard | Grund, Franz | Kjeve, Marit Ness | de Wit, Heleen A. | Austrheim, Gunnar | Mysterud, Atle | Mulder, Jan
Alpine ecosystems, representing a large proportion of the land area in Europe, are under pressure from changes in climate and land-use. This may also impact the quality of drainage waters. Here, we assess effects of plant communities (snowbed, dwarf shrub heath, and tall herb meadow) on concentrations of dissolved organic carbon and nitrogen (DOC and DON), ammonium (NH₄-N), nitrate (NO₃-N), and phosphorus (tot-P and PO₄-P) in locally derived seepage water in a non-fertilized sub-alpine area of southern Norway. In addition, we investigated effects of two density levels of sheep (no sheep and 80 sheep km⁻²) on infiltration capacity, pore size distribution and concentrations of nutrients and bacteria in surface runoff. Concentrations of NO₃-N (<0.02–0.03 mg l⁻¹) and NH₄-N (<0.02–0.03 mg l⁻¹) were low in seepage waters with no significant differences associated with plant community. Also, concentrations of DOC and DON were low, in particular in snowbeds, probably due to low productivity and small soil carbon pools. Infiltration rates, which were significantly smaller in snowbeds than in tall herb meadow, were further reduced by grazing. In turn, this caused increased runoff of coliform bacteria, whereas no effect of grazing on NH₄-N, NO₃-N and PO₄-P was observed. Grazing may significantly alter biological water quality but is not likely to affect the productivity of surface waters in non-fertilized alpine areas.
Show more [+] Less [-]