Refine search
Results 1161-1170 of 8,010
Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden Full text
2021
Ban, Jie | Wang, Qing | Ma, Runmei | Zhang, Yingjian | Shi, Wangying | Zhang, Yayi | Chen, Chen | Sun, Qinghua | Wang, Yanwen | Guo, Xinbiao | Li, Tiantian
Stroke and fine particulate matter (PM₂.₅) are two important public health concerns worldwide. Although numerous studies have reported the associations between PM₂.₅ and stroke, scientific evidence in China is incomplete, particularly the effect of PM₂.₅ on the acute incidence and national acute health burdens of stroke attributed to PM₂.₅ pollution. This study identified about 131,947 registered patients and 23,018 deaths due to stroke in 10 counties located in various regions from 2013 to 2017. Using a time-stratified case-crossover design, this study evaluated the associations between short-term exposure to PM₂.₅ and the risks of acute incidence and mortality for different types of stroke on the same spatiotemporal scale. With a 10 μg/m³ increase in the PM₂.₅ concentration, the acute incidence risk increased by 0.37% (0.15%, 0.60%) for stroke, 0.46% (0.21%, 0.72%) for ischemic stroke, and −0.13% (−0.73%, 0.48%) for hemorrhagic stroke. The corresponding values for the mortality risk were 0.71% (0.08%, 1.33%), 1.09% (0.05%, 2.14%), and 0.43% (−0.44%, 1.31%) for stroke, ischemic stroke and hemorrhagic stroke, respectively. Compared with the other groups, females and patients aged over 64 years presented higher incidence and mortality risks, while the group aged >75 years may exhibit a greater risk of mortality. Based on the estimated effects, we evaluated 43,300 excess deaths and 48,800 acute incidences attributed to short-term PM₂.₅ exposure across China in 2015. This study provided robust estimates of PM₂.₅-induced stroke incidence and mortality risks, and susceptible populations were identified. Excess mortality and morbidity attributed to short-term PM₂.₅ exposure indicate the necessity to implement health care and prevention strategies, as well as medical resource allocation for noncommunicable diseases in regions with high levels of air pollution.
Show more [+] Less [-]Microplastics and microfibers in urban runoff from a suburban catchment of Greater Paris Full text
2021
Treilles, Robin | Gasperi, Johnny | Gallard, Anaïs | Saad, Mohamed | Dris, Rachid | Partibane, Chandirane | Breton, Jérôme | Tassin, Bruno
Microplastics (MPs) and microfibers (MFs) in stormwater have been poorly investigated. Data on their intra and inter rain events variability over time are still sparse. For the first time, the variability of microlitter concentrations in stormwater has been studied. MF and MP concentrations were investigated in stormwater runoff at the outlet of the suburban catchment at Sucy-en-Brie (a suburb of Paris, France), during four rain events. Median MF and MP concentrations were 1.9 and 29 items/L, with an interquartile range of 2.3 and 36 items/L, respectively (N = 18). A different pattern was observed between MFs and MPs. While no relationship or trends were observed for MFs, the highest MP concentrations were observed before the flow rate peak of the rain events. This could indicate a difference in the behaviour between MFs and MPs. We estimated the median MP mass concentration to be 56 μg/L with an interquartile range of 194 μg/L, whereas the mass concentration of macroplastics was estimated to be 31 μg/L with an interquartile range of 22 μg/L at the same sampling site, in a previous study. For this sampling site, MPs and macroplastics have the same order of magnitude. This study may have strong implications on microplastic assessment in urban waters.
Show more [+] Less [-]Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review Full text
2021
Srivastava, Neha | Srivastava, Manish | Alhazmi, Alaa | Kausar, Tahreem | Haque, Shafiul | Singh, Rajeev | Ramteke, Pramod W. | Mishra, Pradeep Kumar | Tuohy, Maria | Leitgeb, Maja | Gupta, Vijai Kumar
Fruit wastes can be imperative to elevate economical biomass to biofuels production process at pilot scale. Because of the renewable features, huge availability, having low lignin content organic nature and low cost; these wastes can be of much interest for cellulase enzyme production. This review provides recent advances on the fungal cellulase production using fruit wastes as a potential substrate. Also, the availability of fruit wastes, generation and processing data and their potential applications for cellulase enzyme production have been discussed. Several aspects, including cellulase and its function, solid-state fermentation, process parameters, microbial source, and the application of enzyme in biofuels industries have also been discussed. Further, emphasis has been made on various bottlenecks and feasible approaches such as use of nanomaterials, co-culture, molecular techniques, genetic engineering, and cost economy analysis to develop a low-cost based comprehensive technology for viable production of cellulase and its application in biofuels production technology.
Show more [+] Less [-]The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter Full text
2021
Geng, Ningbo | Song, Xiaoyao | Cao, Rong | Luo, Yun | A, Mila | Cai, Zhengang | Yu, Kejie | Gao, Yuan | Ni, Yuwen | Zhang, Haijun | Chen, Jiping
PM₂.₅ pollution was associated with numerous adverse health effects. However, PM₂.₅ induced toxic effects and the relationships with toxic components remain largely unknown. To evaluate the metabolic toxicity of PM₂.₅ at environmentally relevant doses, investigate the seasonal variation of PM₂.₅ induced toxicity and the relationship with toxic components, a combination of general pathophysiological tests and metabolomics analysis was conducted in this study to explore the response of SD rats to PM₂.₅ exposure. The result of general toxicology analysis revealed unconspicuous toxicity of PM₂.₅ under environmental dose, but winter PM₂.₅ at high dose caused severe histopathological damage to lung. Metabolomic analysis highlighted significant metabolic disorder induced by PM₂.₅ even at environmentally relevant doses. Lipid metabolism and GSH metabolism were primarily influenced by PM₂.₅ exposure due to the high levels of heavy metals. In addition, high levels of organic compounds such as PAHs, PCBs and PCDD/Fs in winter PM₂.₅ bring multiple overlaps on the toxic pathways, resulting in larger pulmonary toxicity and metabolic toxicity in rats than summer.
Show more [+] Less [-]Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice Full text
2021
Ran, Zihan | An, Yanpeng | Zhou, Ji | Yang, Jingmin | Zhang, Youyi | Yang, Jingcheng | Wang, Lei | Li, Xin | Lu, Daru | Zhong, Jiang | Song, Huaidong | Qin, Xingjun | Li, Rui
Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.
Show more [+] Less [-]Ecotoxicological effects of erythromycin on a multispecies biofilm model, revealed by metagenomic and metabolomic approaches Full text
2021
Pu, Yang | Pan, Jie | Yao, Yuan | Ngan, Wing Yui | Yang, Yang | Li, Meng | Habimana, Olivier
The presence of antibiotics such as erythromycin, even in trace amounts, has long been acknowledged for negatively impacting ecosystems in freshwater environments. Although many studies have focused on the impact of antibiotic pollution at a macroecological level, the impact of erythromycin on microecosystems, such as freshwater biofilms, is still not fully understood. This knowledge gap may be attributed to the lack of robust multispecies biofilm models for fundamental investigations. Here, we used a lab-cultured multispecies biofilm model to elucidate the holistic response of a microbial community to erythromycin exposure using metagenomic and metabolomic approaches. Metagenomic analyses revealed that biofilm microbial diversity did not alter following erythromycin exposure. Notably, certain predicted metabolic pathways such as cell–cell communication pathways, amino acid metabolism, and peptidoglycan biosynthesis, mainly by the phyla Actinobacteria, Alpha/Beta-proteobacteria, Bacteroidetes, and Verrucomicrobia, were found to be involved in the maintenance of homeostasis-like balance in the freshwater biofilm. Further untargeted metabolomics data highlighted changes in lipid metabolism and linoleic acid metabolism and their related molecules as a direct consequence of erythromycin exposure. Overall, the study presented a unique picture of how multispecies biofilms respond to single environmental stress exposures. Moreover, the study demonstrated the feasibility of using lab simulated multispecies biofilms for investigating their interaction and reactivity of specific bioactive compounds or pollutants at a fundamental level.
Show more [+] Less [-]New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals Full text
2021
Yan, Xing | Zang, Zhou | Liang, Zhen | Luo, Nana | Ren, Rongmin | Cribb, Maureen | Li, Zhanqing
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Show more [+] Less [-]Distribution and toxicity of persistent organic pollutants and methoxylated polybrominated diphenylethers in different tissues of the green turtle Chelonia mydas Full text
2021
Weltmeyer, Antonia | Dogruer, Gülsah | Hollert, Henner | Ouellet, Jacob D. | Townsend, Kathy | Covaci, Adrian | Weijs, Liesbeth
Investigating environmental pollution is important to understand its impact on endangered species such as green turtles (Chelonia mydas). In this study, we investigated the accumulation and potential toxicity of selected persistent organic pollutants (POPs) and naturally occurring MeO-PBDEs in liver, fat, kidney and muscle of turtles (n = 30) of different gender, size, year of death, location and health status. Overall, POP concentrations were low and accumulation was highest in liver and lowest in fat which is likely due to the poor health of several animals, causing a remobilization of lipids and associated compounds. PCBs and p,p’-DDE dominated the POP profiles, and relatively high MeO-PBDE concentrations (2′-MeO-BDE 68 up to 192 ng/g lw, 6-MeO-BDE 47 up to 79 ng/g lw) were detected in all tissues. Only few influences of factors such as age, gender and location were found. While concentrations were low compared to other marine wildlife, biological toxicity equivalences obtained by screening the tissue extracts using the micro-EROD assay ranged from 2.8 to 356 pg/g and the highest values were observed in muscle, followed by kidney and liver. This emphazises that pollutant mixtures found in the turtles have the potential to cause dioxin-like effects in these animals and that dioxin-like compounds should not be overlooked in future studies.
Show more [+] Less [-]Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation Full text
2021
Ma, Jie | Chen, Fengyuan | Xu, Huo | Jiang, Hao | Liu, Jingli | Li, Ping | Chen, Ciara Chun | Pan, Ke
Billions of disposable face masks are consumed daily due to the COVID-19 pandemic. The role of these masks as a source of nanoplastics (NPs) and microplastics (MPs) in the environment has not been studied in previous studies. We quantified and characterized face mask released particles and evaluated their potential for accumulation in humans and marine organisms. More than one billion of NPs and MPs were released from each surgical or N95 face mask. These irregularly-shaped particles sized from c. 5 nm to c. 600 μm. But most of them were nano scale sized <1 μm. The middle layers of the masks had released more particles than the outer and inner layers. That MPs were detected in the nasal mucus of mask wearers suggests they can be inhaled while wearing a mask. Mask released particles also adsorbed onto diatom surfaces and were ingested by marine organisms of different trophic levels. This data is useful for assessing the health and environmental risks of face masks.
Show more [+] Less [-]Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6 Full text
2021
Baskaran, Shobanah Menon | Zakaria, Mohd Rafein | Mukhlis Ahmad Sabri, Ahmad Syafiq | Mohamed, Mohd Shamzi | Wasoh, Helmi | Toshinari, Maeda | Hassan Mohd. Ali, | Banat, Ibrahim M.
Biodiesel side stream waste glycerol was identified as a cheap carbon source for rhamnolipids (RLs) production which at the same time could improve the management of waste. The present study aimed to produce RLs by using Pseudomonas aeruginosa RS6 utilizing waste glycerol as a substrate and to evaluate their physico-chemicals properties. Fermentation conditions such as temperature, initial medium pH, waste glycerol concentration, nitrogen sources and concentrations resulted in different compositions of the mono- and di-RLs produced. The maximum RLs production of 2.73 g/L was obtained when P. aeruginosa RS6 was grown in a basal salt medium supplemented with 1% waste glycerol and 0.2 M sodium nitrate at 35 °C and pH 6.5. At optimal fermentation conditions, the emulsification index (E₂₄) values of cooking oil, diesel oil, benzene, olive oil, petroleum, and kerosene were all above E₂₄₌50%. The surface tension reduction obtained from 72.13 mN/m to 29.4–30.4 mN/m was better than the surface activity of some chemical-based surfactants. The RLs produced possessed antimicrobial activities against Gram-negative and Gram-positive bacteria with values ranging from 37% to 77% of growth inhibition when 1 mg/mL of RLs was used. Concentrations of RLs below 1500 μg/mL did not induce phytotoxicity effects on the tested seeds (Vigna radiata) compared to the chemical-based- surfactant, SDS. Furthermore, RLs tested on zebrafish (Danio rerio) embryos only exhibited low acute toxicity with an LC₅₀ value of 72.97 μg/mL at 48 h of exposure suggesting a green and eco-biochemical worthy of future applications to replace chemical-based surfactants.
Show more [+] Less [-]