Refine search
Results 1171-1180 of 1,310
Geochemical Characterization of Organic Pollutants in Effluents Discharged from Various Industrial Sources to Riverine Systems Full text
2011
Botalova, Oxana | Schwarzbauer, Jan
The detailed characterization of the organic composition of industrial effluents discharged from various industrial branches and the distribution of the emitted pollutants in the surface waters in North Rhine-Westphalia have been done with the use of non-target screening analyses. Based on the characterization of molecular structures of wastewater constituents, their quantification as well as the available information on their origin and industrial applications, the identification of typical organic representatives for petrochemical and food effluents has been performed. Among a wide range of hydrocarbons detected in the petrochemical effluents, several novel organic wastewater constituents have been found for the first time. In the effluents from paper production plant, potential industrial indicators were distinguished, such as resin acids (abietic and dehydroabietic acids) and photoinitiators (Irgacure 184). The monitoring of the behaviour of certain environmentally relevant and newly described pollutants in the contaminated river systems allowed the identification of several industrial site-specific markers. Particularly, 2-(chloromethyl)-1,3-dioxolane, an unknown contaminant, exclusively found in the effluents from a chemical production complex, was present in the river under discharge at high concentrations downstream the contamination source. The comprehensive and detailed evaluation of the anthropogenic markers in the industrial effluents is a promising tool for the environmental assessment of industrial emissions, especially if accompanied with toxicological and ecotoxicological investigations of novel environmental contaminants.
Show more [+] Less [-]Use of Granular Bentonite in the Removal of Mercury (II), Cadmium (II) and Lead (II) from Aqueous Solutions Full text
2011
Fernández-Nava, Yolanda | Ulmanu, Mihaela | Anger, Ildiko | Marañón, Elena | Castrillón, Leonor
Granular bentonite has been assessed regarding its capacity to remove Hg(II), Cd(II) and Pb(II) from aqueous solutions. Sorption capacities, kinetics and the dependence of the sorption process on pH were determined. Fractional power, pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were used to model the kinetics of metal adsorption. The pseudo-second-order model showed the best fit to experimental data. Different two-parameter sorption isotherm models (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich) were used to fit the equilibrium data. Freundlich's isotherm model gave the best fit to experimental data. The selectivity of granular bentonite towards these metals is Pb(II) > Cd(II) > Hg(II). The adsorption capacities of granular bentonite towards the metals expressed in milligramme metal per gramme granular bentonite are 19.45, 13.05 and 1.7 for Pb(II), Cd(II) and Hg(II), respectively (for an initial concentration of 100 mg metal/L).
Show more [+] Less [-]Nitrogen Leaching of Two Forest Ecosystems in a Karst Watershed Full text
2011
Jost, Georg | Dirnböck, Thomas | Grabner, Maria-Theresia | Mirtl, Michael
Karst watersheds are a major source of drinking water in the European Alps. These watersheds exhibit quick response times and low residence times, which might make karst aquifers more vulnerable to elevated nitrogen (N) deposition than non-karst watersheds. We summarize 13 years of monitoring NO3 −, NH4 +, and total N in two forest ecosystems, a Norway spruce (Picea abies (L.) Karst.) forest on Cambisols/Stagnosols (IP I) and a mixed beech (Fagus sylvatica L.) spruce forest on Leptosols (IP II). N fluxes are calculated by multiplying concentrations, measured in biweekly intervals, with hydrological fluxes predicted from a hydrological model. The total N deposition in the throughfall amounts to 26.8 and 21.1 kg/ha/year in IP I and IP II, respectively, which is high compared to depositions found in other European forest ecosystems. While the shallow Leptosols at IP II accumulated on average 9.2 kg/ha/year of N between 1999 and 2006, the N budgets of the Cambisols/Stagnosols at IP I were equaled over the study period but show high inter-annual variation. Between 1999 and 2006, on average, 9 kg/ha/year of DON and 20 kg/ha/year of DIN were output with seepage water of IP I but only 4.5 kg/ha/year of DON and 7.7 kg/ha/year of DIN at IP II. Despite high DIN leaching, neither IP I nor IP II showed further signs of N saturation in their organic layer C/N ratios, N mineralization, or leaf N content. The N budget over all years was dominated by a few extreme output events. Nitrate leaching rates at both forest ecosystems correlated the most with years of above average snow accumulation (but only for IP I this correlation is statistically significant). Both snow melt and total annual precipitation were most important drivers of DON leaching. IP I and IP II showed comparable temporal patterns of both concentrations and flux rates but exhibited differences in magnitudes: DON, NO3 −, and NH4 + inputs peak in spring, NH4 + showed an additional peak in autumn; the bulk of the annual NO3 − and DON output occurred in spring; DON, NO3 −, and NH4 + output rates during winter months were low. The high DIN leaching at IP I was related to snow cover effects on N mineralization and soil hydrology. From the year 2004 onwards, disproportional NO3 − leaching occurred at both plots. This was possibly caused by the exceptionally dry year 2003 and a small-scale bark beetle infestation (at IP I), in addition to snow cover effects. This study shows that both forest ecosystems at Zöbelboden are still N limited. N leaching pulses, particularly during spring, dictate not only annual but also the long-term N budgets. The overall magnitude of N leaching to the karst aquifer differs substantially between forest and soil types, which are found in close proximity in the karstified areas of the Northern Limestone Alps in Austria.
Show more [+] Less [-]Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review Full text
2011
Ahmed, Saber | Rasul, M. G. | Martens, Wayde N. | Brown, Richard | Hashib, M. A.
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in wastewater effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatalytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal, and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.
Show more [+] Less [-]Biological Degradation of Common Pharmaceuticals and Personal Care Products in Soils with High Water Content Full text
2011
Carr, Deborah L. | Morse, Audra N. | Zak, John C. | Anderson, Todd A.
Biological degradation rates of six pharmaceuticals and personal care products were examined in soil from a land application site and in adjacent soil with no prior history of effluent exposure. Microbial degradation rates were compared over 2Â weeks under standing water or saturated conditions and draining conditions after having been saturated for 3Â days. Biological degradation of 17β-estradiol exhibited rapid rates of biological degradation under both saturated and draining conditions. Half-lives for 17β-estradiol ranged from 1.5 to 4Â days; 66–97% was lost from the soils. Estriol showed a pattern of biological degradation in both saturated and draining conditions though the half-lives were longer (8.7–25.9Â days) than those observed for 17β-estradiol. Twenty-eight percent to 73% of estriol was lost over the 14Â days treatment period. Estrone and 17α-ethinylestradiol exhibited slower rates of biological transformation under saturated and draining conditions. Half-lives for estrone ranged between 27.5 and 56.8Â days with loss of at most 21%. 17α-ethinylestradiol exhibited half-lives of 22.6–207Â days. Half-life data for ibuprofen ranged from 30.4 to 1,706.4Â days in this experiment. Losses of up to 17% were observed in draining soils. Triclosan loss was at most 10%, and half-lives were 70.9–398.8Â days. In all cases, soils that were draining from saturated conditions exhibited faster degradation rates than soils that remained saturated. Prior exposure of the soil to effluent did not always result in higher biological degradation rates.
Show more [+] Less [-]An Efficient Implementation of the Method of Lines for Multicomponent Reactive Transport Equations Full text
2011
Fahs, Marwan | Younes, Anis | Ackerer, Philippe
Modeling reactive transport with chemical equilibrium reactions requires solution of coupled partial differential and algebraic equations. In this work, two formulations are developed to combine the method of lines (MOL) with the global implicit approach. The first formulation has a non-conservative form and leads to a nonlinear system of ordinary differential equations with a reduced number of unknowns. The second formulation presents better conservation properties but leads to a nonlinear system of differential algebraic equations with a large number of unknowns. In both formulations, the resulting systems are integrated in time using the DLSODIS time solver which adapts both the order of the time integration and the time step size to provide the necessary accuracy. Numerical experiments show that higher-order time integration is effective for solving the non-conservative formulation and point out the high benefit of the MOL for solving reactive transport problems.
Show more [+] Less [-]Processes in Pathogenic Biocolloidal Contaminants Transport in Saturated and Unsaturated Porous Media: A Review Full text
2011
Sen, Tushar Kanti
There are several classes of subsurface colloids, abiotic and biotic. Basically, small particles of inorganic, organic and pathogenic biocolloids variety exist in natural subsurface system. Transport of these pathogenic biocolloidal contaminants (Viruses, bacteria and protozoa) pose a great risk in water resources and have caused large outbreaks of waterborne diseases. Biocolloid transport processes through saturated and unsaturated porous media is of significant interest, from the perspective of protection of groundwater supplies from contamination, assessment of risk from pathogens in groundwater and for the design of better water treatment systems to remove biocolloids from drinking water supplies This paper has reviewed the large volume of work that has already been done and the progress that has been made towards understanding the various basic multi-processes to predicting the biocolloid transport in saturated and unsaturated porous media. There are several basic processes such as physical, chemical and biological processes which are important in biocolloid transport. The physical processes such as advection, dispersion, diffusion, straining and physical filtration, adsorption and biological processes such as growth/decay processes and include active adhesion/detachment, survival and chemotaxis are strongly affected on biocolloid transport in saturated and unsaturated porous media. The unsaturated zone may play an important role in protecting aquifers from biocolloidal contamination by retaining them in the solid phase during their transport through the zone. Finally, author here highlighted the future research direction based on his critical review on biocolloid transport in saturated and unsaturated porous media.
Show more [+] Less [-]A Comparison of the Temporally Integrated Monitoring of Ecosystems and Adirondack Long-Term Monitoring Programs in the Adirondack Mountain Region of New York Full text
2011
Civerolo, Kevin L. | Roy, Karen M. | Stoddard, John L. | Sistla, Gopal
This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initiated in the early 1990s to track the efficacy of emission reduction policies and to assess the full impacts of acid deposition on surface water chemistry. They now serve to inform on the emerging chemical recovery of these waters. The Adirondack TIME program utilizes a probability-based approach to assess chronic acidification in a population of lakes using one summer sample per year. The ALTM attempts to track changes in both chronic and episodic acidification across a gradient of lake types using monthly samples. The ALTM project has two important attributes that contrast with the TIME program in the Adirondacks: higher temporal resolution (monthly versus once during the summer or fall) and speciation of aluminum. In particular, the ALTM program provides inorganic monomeric aluminum (AlIM), the fraction of Al that is most toxic. The monthly sampling of the ALTM program includes the spring snowmelt period when acid-neutralizing capacity and pH are near their lowest and Al levels are near their highest. We compare chemistry trends (1992–2008) for sulfate, nitrate, base cations, dissolved organic carbon, hydrogen ion, acid neutralizing capacity, and Al for the six lakes common to both programs. We also compare relatively high springtime AlIM concentrations from the ALTM with relatively low summertime total Al concentrations from the TIME, showing that the ALTM program provides a more biologically relevant indicator of the effects of acid deposition, illustrating the value of the complementary monitoring efforts in the Adirondack region.
Show more [+] Less [-]Field Study of Salt Balance of a Land Application System Full text
2011
Duan, Runbin | Fedler, Clifford B. | Sheppard, Christopher D.
Wastewater land application is a cost-effective method to treat and dispose wastewater; however, it may cause soil salinization. Salt mass balance and the potential soil salinization caused by the wastewater land application were investigated in the crop root zone in a wastewater land application system at the City of Littlefield, TX, USA from October 7, 2005 to September 28, 2007 using a lysimeter system. This study showed that, after 2 years of wastewater land application, the ranges of soil salinity were still lower than the threshold (8,500 μS/cm) for Bermuda grass assuming a 10% yield reduction. The leached salt mass showed large spatial and temporal variation. The average values of electrical conductivity of the saturated paste extract of the soil samples increased from 1,433 μS/cm in June 2006 to 1,840 μS/cm in June 2007. The average values of the soil sodium adsorption ratio between June 2006 and June 2007 increased from 11 to 14 resulting in a potential risk of soil dispersion and decreasing the soil infiltration rate. Although the measured leaching fractions in nearly all sampling periods, except one, were higher than the leaching requirement, salt accumulations in the root zone were still found with only two exceptions. Since the time required for reaching equilibrium between cumulative salt mass input and cumulative salt mass output varies from 1 year to a few years, or even longer, the long-term investigation is recommended for the study of salt mass balance in the root zone of this wastewater land application system.
Show more [+] Less [-]Removal Capacity of Caffeine, Hormones, and Bisphenol by Aerobic and Anaerobic Sewage Treatment Full text
2011
Froehner, Sandro | Piccioni, Willian | Machado, Karina Scurupa | Aisse, Miguel Mansur
The number of chemical compounds in sewage and consequently their release into the environment is increasing. Some of them are toxic and many of them are considered endocrine disrupters. Here, the capacity of three wastewater treatment plants (WWTPs) to remove caffeine, hormones and bisphenol-A was investigated. Bisphenol-A and caffeine are highly water-soluble compounds, as opposed to hormones (estradiol, estriol, and ethynilestradiol) which are hydrophobic compounds. In the Sewage Treatment Plant (SWT)1 the sewage is treated by activated sludge process, in the second plant, SWT2, sewage is treated by upflow anaerobic sludge blanket reactors followed by dissolved air flotation, and in the third, SWT3 sewage is treated by stabilization lagoons. The first lagoon is 3.5 m deep, thus facultative and polishment processes occur. It was speculated that there was a difference in efficiency between the three plants in removing micropollutants. Small differences were found in the amounts removed, probably accounted for by retention time. The caffeine and bisphenol-A were almost completely removed, higher than 90% for both compounds (bisphenol-A and caffeine) in all WWTPs. The hormones, however, had a smaller rate of removal, between 70% and 87%. It is suspected that retention time is essential for removal efficiency, together with type of treatment. In fact, the hormones, caffeine, and bisphenol-A found in the environment definitely come from untreated sewage.
Show more [+] Less [-]