Refine search
Results 1171-1180 of 8,011
Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China Full text
2021
Rupakheti, Dipesh | Yin, Xiufeng | Rupakheti, Maheswar | Zhang, Qianggong | Li, Ping | Rai, Mukesh | Kang, Shichang
To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013–June 2019. The annual mean PM₂.₅, PM₁₀, SO₂, NO₂, CO, and O₃ concentrations ranged from 51.44 to 59.54 μg m⁻³, 128.43–155.28 μg m⁻³, 10.99–17.99 μg m⁻³, 26.27–31.71 μg m⁻³, 1.04–1.32 mg m⁻³, and 55.27–65.26 μg m⁻³, respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM₁₀₋₂.₅) was predominant, particularly during the spring and summer seasons. The highest PM₂.₅/PM₁₀ ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM₂.₅ (PM₁₀) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. ∼5–6 (∼7–8). Very high ambient PM concentrations were recorded during March 19–22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM₂.₅ (PM₁₀) concentrations ∼8–54 (∼26–115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m⁻³. Such high PM₂.₅ and PM₁₀ concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region.
Show more [+] Less [-]In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio) Full text
2021
Han, Ying | Ma, Yuanyuan | Yao, Shangchen | Zhang, Jingpu | Hu, Changqin
Quinolones are ranked as the second most commonly used class of antibiotics in China, despite their adverse clinical and environmental effects. However, information on their cardiac developmental toxicity to zebrafish is limited. This study investigates the relationships between different quinolone structures and toxicity in zebrafish embryos using in vivo and in silico methods. All of the experimentally tested quinolones show cardiac developmental toxicity potential and present mortality and teratogenic effects in a dose-dependent manner. Theoretically, the acute toxicity values predicted using quantitative structure−toxicity relationship (QSTR) modeling based on previously reported LC₅₀ values are in good agreement with the in vivo results. Further investigation demonstrates that the hormetic concentration response of some quinolones may be related to methylation on the piperazine ring at the C-7 position. The amino group at the C-5 position, the methylated or ethylated piperazine group at the C-7 position, halogens at the C-8 position and a cyclopropyl ring at N1 position may be responsible for cardiac developmental toxicity. In terms of survival (key ecological endpoint), the naridine ring is more toxic than the quinoline ring. This combined approach can predict the acute and cardiac developmental toxicity of other quinolones and impurities.
Show more [+] Less [-]Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site Full text
2021
Eckley, Chris S. | Luxton, Todd P. | Stanfield, Brooks | Baldwin, Austin | Holloway, JoAnn | McKernan, John | Johnson, Mark G.
Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)—the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosm experiments that were conducted using different types of organic carbon soil amendments mixed with materials from the mine site. The results showed that >80% of the THg mobilized from the mine was bound to particles and that >90% of the annual Hg loading occurred during the period of elevated discharge during spring snowmelt. Methylation rates varied between different types of soil amendments and were correlated with the components of excitation emission matrices (EEMs) associated with humic acid fractions of organic matter. The mesocosm experiments showed that under anoxic conditions carbon amendments to tailings could significantly increase porewater MeHg concentrations (up to 13 ± 3 ng/L). In addition, the carbon amendments significantly increased THg partitioning into porewater. Overall, these results indicate that soil amendment applications to reduce surface erosion at abandoned mine sites could be effective at reducing particulate Hg mobilization to downstream waterbodies; however, some types of carbon amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.
Show more [+] Less [-]Influence of Tubificidae Limnodrilus and electron acceptors on the environmental fate of BDE-47 in sediments by (14)C-labelling Full text
2021
Liu, Yanhua | Li, Jinrong | Guo, Ruixin | Ji, Rong | Chen, Jianqiu
2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) was difficult to degrade in sediments. In this study, the environmental behavior of BDE-47 with/without the effect of benthos (Tubificidae Limnodrilus) and electron acceptors in sediments was investigated using C-14 tracer. Generally, extractable residues of BDE-47 were dominant in sediment and posed high environment risk. The amount of non-extractable residues (NERs) accounted for 39.0% of initial radioactivity in oxic sediments was significantly higher than those in anoxic sediments (17.6%). Most of NERs were localized in the humin fraction and presented as sequestrated forms. Under oxic conditions, the present of Limnodrilus significantly increased the proportion of NERs in sediment. Limnodrilus accumulated 34.2% of initial radioactivity. Under anoxic conditions, the addition of iron (Ⅲ) [Fe(III)], sulfate and nitrate reduced the environmental risk of BDE-47 with the increase of NERs formation, while manganese (IV) [Mn(IV)] addition had no effect on the formation of NERs. The present of Limnodrilus and electron acceptors promoted the production of metabolites. Meanwhile, BDE-47 changed the microbial community structure of sediments. These findings indicated that the environmental behavior and risk of BDE-47 was affected by benthos and electron acceptors, and the high proportion of sequestrated NERs posed high bioactivity and toxic threat to ecological environment.
Show more [+] Less [-]Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field Full text
2021
Jia, Xiyue | Cao, Yining | O’Connor, David | Zhu, Jin | Tsang, Daniel C.W. | Zou, Bin | Hou, Deyi
Mapping soil contamination enables the delineation of areas where protection measures are needed. Traditional soil sampling on a grid pattern followed by chemical analysis and geostatistical interpolation methods (GIMs), such as Kriging interpolation, can be costly, slow and not well-suited to highly heterogeneous soil environments. Here we propose a novel method to map soil contamination by combining high-resolution aerial imaging (HRAI) with machine learning algorithms. To support model establishment and validation, 1068 soil samples were collected from an arsenic (As) contaminated area in Zhongxiang, Hubei province, China. The average arsenic concentration was 39.88 mg/kg (SD = 213.70 mg/kg), with individual sample points determined as low risk (66.9%), medium risk (29.4%), or high risk (3.7%), respectively. Then, identified features were extracted from a HRAI image of the study area. Four machine learning algorithms were developed to predict As risk levels, including (i) support vector machine (SVM), (ii) multi-layer perceptron (MLP), (iii) random forest (RF), and (iii) extreme random forest (ERF). Among these, we found that the ERF algorithm performed best overall and that its prediction performance was generally better than that of traditional Kriging interpolation. The accuracy of ERF in test area 1 reached 0.87, performing better than RF (0.81), MLP (0.78) and SVM (0.77). The F1-score of ERF for discerning high-risk points in test area 1 was as high as 0.8. The complexity of the distribution of points with different risk levels was a decisive factor in model prediction ability. Identified features in the study area associated with fertilizer factories had the most important contribution to the ERF model. This study demonstrates that HRAI combined with machine learning has good potential to predict As soil risk levels.
Show more [+] Less [-]Heterogeneous photochemical uptake of NO2 on the soil surface as an important ground-level HONO source Full text
2021
Yang, Wangjin | Han, Chŏng | Zhang, Tingting | Tang, Ning | Yang, He | Xue, Xiangxin
Nitrous acid (HONO) production from the heterogeneous photochemical reaction of NO₂ on several Chinese soils was performed in a cylindrical reactor at atmospheric pressure. The NO₂ uptake coefficient (γ) and HONO yield (YHONO) on different soils were (0.42–5.16) × 10⁻⁵ and 6.3%–69.6%, respectively. Although the photo-enhanced uptake of NO₂ on different soils was observed, light could either enhance or inhibit the conversion efficiency of NO₂ to HONO, depending on the properties of the soils. Soils with lower pH generally had larger γ and YHONO. Soil organics played a key role in HONO formation through the photochemical uptake of NO₂ on soil surfaces. The γ showed a positive correlation with irradiation and temperature, while it exhibited a negative relationship with relative humidity (RH). YHONO inversely depended on the soil mass (0.32–3.25 mg cm⁻²), and it positively relied on the irradiance and RH (7%–22%). There was a maximum value for YHONO at 298 K. Based on the experimental results, HONO source strengths from heterogeneous photochemical reaction of NO₂ on the soil surfaces were estimated to be 0.2–2.7 ppb h⁻¹ for a mixing layer height of 100 m, which could account for the missing daytime HONO sources in most areas.
Show more [+] Less [-]Elucidating the co-transport of bisphenol A with polyethylene terephthalate (PET) nanoplastics: A theoretical study of the adsorption mechanism Full text
2021
Cortés-Arriagada, Diego
Polyethylene terephthalate (PET) is a possible key component of nanoplastics in water environments, which can migrate pollutants through co-transport. In this regard, the co-transport of endocrine disruptors (such as bisphenol A, BPA) by nanoplastics is of emergent concern because of its cytotoxicity/bioaccumulation effects in aquatic organisms. In this work, a computational study is performed to reveal the BPA adsorption mechanism onto PET nanoplastics (nanoPET). It is found that the outer surface of nanoPET has a nucleophilic nature, allowing to increase the mass transfer and intraparticle diffusion into the nanoplastic to form stable complexes by inner and outer surface adsorption. The maximum adsorption energy is similar (even higher) in magnitude with respect to nanostructured adsorbents such as graphene, carbon nanotubes, activated carbon, and inorganic surfaces, indicating the worrying adsorption properties of nanoPET. The adsorption mechanism is driven by the interplay of dispersion (38–49%) and electrostatics effects (43–50%); specifically, dispersion effects dominate the inner surface adsorption, while electrostatics energies dominate the outer surface adsorption. It is also determined that π–π stacking is not a reliable interaction mechanism for aromatics on nanoPET. The formed complexes are also highly soluble, and water molecules behave as non-competitive factors, establishing the high risk of nanoPET to adsorb and migrate pollutants in water ecosystems. Furthermore, the adsorption performance is decreased (but not inhibited) at high ionic strength in salt-containing waters. Finally, these results give relevant information for environmental risk assessment, such as quantitative data and interaction mechanisms for non-biodegradable nanoplastics that establish strong interactions with pollutants in water.
Show more [+] Less [-]Gut microbiota mediate Plutella xylostella susceptibility to Bt Cry1Ac protoxin is associated with host immune response Full text
2021
Li, Shuzhong | Xu, Xiaoxia | De Mandal, Surajit | Shakeel, Muhammad | Hua, Yanyan | Shoukat, Rana Fartab | Fu, Dongran | Jin, Fengliang
Insect gut microbiotas have a variety of physiological functions for host growth, development, and immunity. Bacillus thuringiensis (Bt) is known to kill insect pests by releasing insecticidal protoxins, which are activated in the insect midgut. However, the interplay among Bt infection, host immunity, and gut microbiota are still unclear. Here we show that Bt Cry1Ac protoxin interacts with the gut microbiota to accelerate the mortality of P. xylostella larvae. Cry1Ac protoxin was found to cause a dynamic change in the midgut and hemocoel microbiota of P. xylostella, with a significant increase in bacterial load and a significant reduction in bacterial diversity. In turn, loss of gut microbiota significantly decreased the Bt susceptibility of P. xylostella larvae. The introduction of three gut bacterial isolates Enterococcus mundtii (PxG1), Carnobacterium maltaromaticum (PxCG2), and Acinetobacter guillouiae (PxCG3) restored sensitivity to Bt Cry1Ac protoxin. We also found that Cry1Ac protoxin and native gut microbiota can trigger host midgut immune response, which involves the up-regulation of expression of Toll and IMD pathway genes and most antimicrobial peptide genes, respectively. Our findings further shed light on the interplay between insect gut microbiota and host immunity under the Bt toxin killing pressure, and this may provide insights for improving the management of Bt resistance and lead to new strategies for biological control of insect pests.
Show more [+] Less [-]Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network Full text
2021
Wang, Bin | Yuan, Qiangqiang | Yang, Qian | Zhu, Liye | Li, Tongwen | Zhang, Liangpei
Fine particulate matter (PM₂.₅) has attracted extensive attention because of its baneful influence on human health and the environment. However, the sparse distribution of PM₂.₅ measuring stations limits its application to public utility and scientific research, which can be remedied by satellite observations. Therefore, we developed a Geo-intelligent long short-term network (Geoi-LSTM) to estimate hourly ground-level PM₂.₅ concentrations in 2017 in Wuhan Urban Agglomeration (WUA). We conducted contrast experiments to verify the effectiveness of our model and explored the optimal modeling strategy. It turned out that Geoi-LSTM with TOA reflectance, meteorological conditions, and NDVI as inputs performs best. The station-based cross-validation R², root mean squared error and mean absolute error are 0.82, 15.44 μg/m³, 10.63 μg/m³, respectively. Based on model results, we revealed spatiotemporal characteristics of PM₂.₅ in WUA. Generally speaking, during the day, PM₂.₅ concentration remained stable at a relatively high level in the morning and decreased continuously in the afternoon. While during the year, PM₂.₅ concentrations were highest in winter, lowest in summer, and in-between in spring and autumn. Combined with meteorological conditions, we further analyzed the whole process of a PM₂.₅ pollution event. Finally, we discussed the loss in removing clouds-covered pixels and compared our model with several popular models. Overall, our results can reflect hourly PM₂.₅ concentrations seamlessly and accurately with a spatial resolution of 5 km, which benefits PM₂.₅ exposure evaluations and policy regulations.
Show more [+] Less [-]Malus rootstocks affect copper accumulation and tolerance in trees by regulating copper mobility, physiological responses, and gene expression patterns Full text
2021
Wan, Huixue | Yang, Fengying | Zhuang, Xiaolei | Cao, Yanhong | He, Jiali | Li, Huifeng | Qin, Sijun | Lyu, Deguo
We investigated the roles of rootstocks in Cu accumulation and tolerance in Malus plants by grafting ‘Hanfu’ (HF) scions onto M. baccata (Mb) and M. prunifolia (Mp) rootstocks, which have different Cu tolerances. The grafts were exposed to basal or excess Cu for 20 d. Excess Cu-treated HF/Mb had less biomass, and pronounced root architecture deformation and leaf ultrastructure damage than excess Cu-challenged HF/Mp. Root Cu concentrations and bio-concentration factor (BCF) were higher in HF/Mp than HF/Mb, whereas HF/Mb had higher stem and leaf Cu concentrations than HF/Mp. Excess Cu lowered root and aerial tissue BCF and translocation factor (Tf) in all plants; however, Tf was markedly higher in HF/Mb than in HF/Mp. The subcellular distribution of Cu in the roots and leaves indicated that excess Cu treatments increased Cu fixation in the root cell walls, which decreased Cu mobility. Compared to HF/Mb, HF/Mp sequestered more Cu in its root cell walls and less Cu in leaf plastids, nuclei, and mitochondria. Moreover, HF/Mp roots and leaves had higher concentrations of water-insoluble Cu compounds than HF/Mb, which reduced Cu mobility and toxicity. Fourier transform infrared spectroscopy analysis showed that the carboxyl, hydroxyl and acylamino groups of the cellulose, hemicellulose, pectin and proteins were the main Cu binding sites in the root cell walls. Excess Cu-induced superoxide anion and malondialdehyde were 28.6% and 5.1% lower, but soluble phenolics, ascorbate and glutathione were 10.5%, 41.9% and 17.7% higher in HF/Mp than HF/Mb leaves. Compared with HF/Mb, certain genes involved in Cu transport were downregulated, while other genes involved in detoxification were upregulated in HF/Mp roots and leaves. Our results show that Mp inhibited Cu translocation and mitigated Cu toxicity in Malus scions by regulating Cu mobility, antioxidant defense mechanisms, and transcription of key genes involved in Cu translocation and detoxification.
Show more [+] Less [-]