Refine search
Results 1181-1190 of 6,643
A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris Full text
2020
Wang, Lei | Huang, Xulei | Sun, Weiling | Too, Hui Zhen | Laserna, Anna Karen Carrasco | Li, Sam Fong Yau
To compare aquatic organisms’ responses to the toxicity of copper oxide (CuO) nanoparticles (NPs) with those of CuO microparticles (MPs) and copper (Cu) ions, a global metabolomics approach was employed to investigate the changes of both polar and nonpolar metabolites in microalga Chlorella vulgaris after 5-day exposure to CuO NPs and MPs (1 and 10 mg/L), as well as the corresponding dissolved Cu ions (0.08 and 0.8 mg/L). Unchanged growth, slight reactive oxygen species production, and significant membrane damage (at 10 mg/L CuO particles) in C. vulgaris were demonstrated. A total of 75 differentiated metabolites were identified. Most metabolic pathways perturbed after CuO NPs exposure were shared by those after CuO MPs and Cu ions exposure, including accumulation of chlorophyll intermediates (max. 2.4–5.2 fold), membrane lipids remodeling for membrane protection (decrease of phosphatidylethanolamines (min. 0.6 fold) and phosphatidylcholines (min. 0.2–0.7 fold), as well as increase of phosphatidic acids (max. 1.5–2.9 fold), phosphatidylglycerols (max. 2.2–2.3 fold), monogalactosyldiacylglycerols (max. 1.2–1.4 fold), digalactosylmonoacylglycerols (max. 1.9–3.8 fold), diacylglycerols (max. 1.4 fold), lysophospholipids (max. 1.8–3.0 fold), and fatty acids (max. 3.0–6.2 fold)), perturbation of glutathione metabolism induced by oxidative stress, and accumulation of osmoregulants (max. 1.3–2.6 fold) to counteract osmotic stress. The only difference between metabolic responses to particles and those to ions was the accumulation of fatty acids oxidation products: particles caused higher fold changes (particles/ions ratio 1.9–3.0) at 1 mg/L and lower fold changes (particles/ions ratio 0.4–0.7) at 10 mg/L compared with ions. Compared with microparticles, there was no nanoparticle-specific pathway perturbed. These results confirm the predominant role of dissolved Cu ions on the toxicity of CuO NPs and MPs, and also reveal particle-specific toxicity from a metabolomics perspective.
Show more [+] Less [-]A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio) Full text
2020
Mu, Xiyan | Chen, Xiaofeng | Liu, Jia | Yuan, Lilai | Wang, Donghui | Qian, Le | Qian, Yu | Shen, Gongming | Huang, Ying | Li, Xuxing | Li, Yingren | Lin, Xiangming
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Show more [+] Less [-]Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms Full text
2020
Teng, Dongye | Zhang, Bingbing | Xu, Guomin | Wang, Bing | Mao, Gang | Wang, Jianxu | Sun, Jing | Feng, Xinbin | Yang, Zhugen | Zhang, Hua
Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms Full text
2020
Teng, Dongye | Zhang, Bingbing | Xu, Guomin | Wang, Bing | Mao, Gang | Wang, Jianxu | Sun, Jing | Feng, Xinbin | Yang, Zhugen | Zhang, Hua
Cadmium (Cd) is one of the most harmful and widespread environmental pollutants. Despite decades-long research efforts, the remediation of water contaminated by Cd has remained a significant challenge. A novel carbon material, pinecone biochar, was previously hypothesized to be a promising adsorbent for Cd, while so far, it has received little attention. This study evaluated the sorption capacity of pinecone biochar through isotherm experiments. Based on Langmuir model, the adsorption maximum for Cd(II) was up to 92.7 mg g⁻¹. The mechanism of Cd(II) adsorption on pinecone biochar was also explored through both thermodynamic and kinetics adsorption experiments, as well as both solution and solid-phase microstructure characterization. The solid-solution partitioning behaviour of Cd(II) fitted best with the Tόth model while the adsorption process followed a pseudo-second-order rate, suggesting that the Cd(II) adsorption on the pinecone biochar was mainly a chemisorption process. Microstructure characteristics and mechanism analysis further suggested that coprecipitation and surface complexation were the main mechanisms of Cd adsorption by biochar. Coprecipitation occurred mainly through the forms of Cd(OH)₂ and CdCO₃. Our results demonstrated that pinecone biochar was an efficient adsorbent which holds a huge potential for Cd(II) removal from aqueous solution.
Show more [+] Less [-]Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms Full text
2020
Teng, Dongye | Zhang, Bingbing | Xu, Guomin | Wang, Bing | Mao, Kang | Wang, Jianxu | Sun, Jing | Feng, Xinbin | Yang, Zhugen | Zhang, Hua
Cadmium (Cd) is one of the most harmful and widespread environmental pollutants. Despite decades-long research efforts, the remediation of water contaminated by Cd has remained a significant challenge. A novel carbon material, pinecone biochar, was previously hypothesized to be a promising adsorbent for Cd, while so far, it has received little attention. This study evaluated the sorption capacity of pinecone biochar through isotherm experiments. Based on Langmuir model, the adsorption maximum for Cd(II) was up to 92.7 mg g−1. The mechanism of Cd(II) adsorption on pinecone biochar was also explored through both thermodynamic and kinetics adsorption experiments, as well as both solution and solid-phase microstructure characterization. The solid-solution partitioning behaviour of Cd(II) fitted best with the Tόth model while the adsorption process followed a pseudo-second-order rate, suggesting that the Cd(II) adsorption on the pinecone biochar was mainly a chemisorption process. Microstructure characteristics and mechanism analysis further suggested that coprecipitation and surface complexation were the main mechanisms of Cd adsorption by biochar. Coprecipitation occurred mainly through the forms of Cd(OH)2 and CdCO3. Our results demonstrated that pinecone biochar was an efficient adsorbent which holds a huge potential for Cd(II) removal from aqueous solution.
Show more [+] Less [-]Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance Full text
2020
Mahbub, Khandaker Rayhan | King, William L. | Siboni, Nachshon | Nguyen, Viet Khue | Rahman, Mohammad Mahmudur | Megharaj, Mallavarapu | Seymour, Justin R. | Franks, Ashley E. | Labbate, Maurizio
Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance Full text
2020
Mahbub, Khandaker Rayhan | King, William L. | Siboni, Nachshon | Nguyen, Viet Khue | Rahman, Mohammad Mahmudur | Megharaj, Mallavarapu | Seymour, Justin R. | Franks, Ashley E. | Labbate, Maurizio
Antibiotic resistance genes (ARGs) in the environment are an exposure risk to humans and animals and is emerging as a global public health concern. In this study, mercury (Hg) driven co-selection of ARGs was investigated under controlled conditions in two Australian non-agricultural soils with differing pH. Soils were spiked with increasing concentrations of inorganic Hg and left to age for 5 years. Both soils contained ARGs conferring resistance to tetracycline (tetA, tetB), sulphonamides (sul1), trimethoprim (dfrA1) and the ARG indicator class 1 integron-integrase gene, intI1, as measured by qPCR. The last resort antibiotic vancomycin resistance gene, vanB and quinolone resistance gene, qnrS were not detected. Hg driven co-selection of several ARGs namely intI1, tetA and tetB were observed in the alkaline soil within the tested Hg concentrations. No co-selection of the experimental ARGs was observed in the neutral pH soil. 16S rRNA sequencing revealed proliferation of Proteobacteria and Bacteriodetes in Hg contaminated neutral and alkaline soils respectively. Multivariate analyses revealed a strong effect of Hg, soil pH and organic carbon content on the co-selection of ARGs in the experimental soils. Additionally, although aging caused a significant reduction in Hg content, agriculturally important bacterial phyla such as Nitrospirae did not regrow in the contaminated soils. The results suggest that mercury can drive co-selection of ARGs in contaminated non-agricultural soils over five years of aging which is linked to soil microbiota shift and metal chemistry in the soil.
Show more [+] Less [-]Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance Full text
2020
Mahbub, K.R. | King, W.L. | Siboni, N. | Nguyen, V.K. | Rahman, M.M. | Megharaj, M. | Seymour, J.R. | Franks, A.E. | Labbate, M.
Antibiotic resistance genes (ARGs) in the environment are an exposure risk to humans and animals and is emerging as a global public health concern. In this study, mercury (Hg) driven co-selection of ARGs was investigated under controlled conditions in two Australian non-agricultural soils with differing pH. Soils were spiked with increasing concentrations of inorganic Hg and left to age for 5 years. Both soils contained ARGs conferring resistance to tetracycline (tetA, tetB), sulphonamides (sul1), trimethoprim (dfrA1) and the ARG indicator class 1 integron-integrase gene, intI1, as measured by qPCR. The last resort antibiotic vancomycin resistance gene, vanB and quinolone resistance gene, qnrS were not detected. Hg driven co-selection of several ARGs namely intI1, tetA and tetB were observed in the alkaline soil within the tested Hg concentrations. No co-selection of the experimental ARGs was observed in the neutral pH soil. 16S rRNA sequencing revealed proliferation of Proteobacteria and Bacteriodetes in Hg contaminated neutral and alkaline soils respectively. Multivariate analyses revealed a strong effect of Hg, soil pH and organic carbon content on the co-selection of ARGs in the experimental soils. Additionally, although aging caused a significant reduction in Hg content, agriculturally important bacterial phyla such as Nitrospirae did not regrow in the contaminated soils. The results suggest that mercury can drive co-selection of ARGs in contaminated non-agricultural soils over five years of aging which is linked to soil microbiota shift and metal chemistry in the soil. | Khandaker Rayhan Mahbub, William L. King, Nachshon Siboni, Viet Khue Nguyen, Mohammad Mahmudur Rahman, Mallavarapu Megharaj, Justin R. Seymour, Ashley E. Franks, Maurizio Labbate
Show more [+] Less [-]Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. Full text
2020
Mahbub, KR | King, WL | Siboni, N | Nguyen, VK | Rahman, MM | Megharaj, M | Seymour, JR | Franks, AE | Labbate, M
Antibiotic resistance genes (ARGs) in the environment are an exposure risk to humans and animals and is emerging as a global public health concern. In this study, mercury (Hg) driven co-selection of ARGs was investigated under controlled conditions in two Australian non-agricultural soils with differing pH. Soils were spiked with increasing concentrations of inorganic Hg and left to age for 5 years. Both soils contained ARGs conferring resistance to tetracycline (tetA, tetB), sulphonamides (sul1), trimethoprim (dfrA1) and the ARG indicator class 1 integron-integrase gene, intI1, as measured by qPCR. The last resort antibiotic vancomycin resistance gene, vanB and quinolone resistance gene, qnrS were not detected. Hg driven co-selection of several ARGs namely intI1, tetA and tetB were observed in the alkaline soil within the tested Hg concentrations. No co-selection of the experimental ARGs was observed in the neutral pH soil. 16S rRNA sequencing revealed proliferation of Proteobacteria and Bacteriodetes in Hg contaminated neutral and alkaline soils respectively. Multivariate analyses revealed a strong effect of Hg, soil pH and organic carbon content on the co-selection of ARGs in the experimental soils. Additionally, although aging caused a significant reduction in Hg content, agriculturally important bacterial phyla such as Nitrospirae did not regrow in the contaminated soils. The results suggest that mercury can drive co-selection of ARGs in contaminated non-agricultural soils over five years of aging which is linked to soil microbiota shift and metal chemistry in the soil.
Show more [+] Less [-]Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Full text
2020
Al-Thani, R.F. | Yasseen, B.T.
Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Full text
2020
Al-Thani, R.F. | Yasseen, B.T.
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants.
Show more [+] Less [-]Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives Full text
2020
Al-Thani, R.F. | Yasseen, B.T.
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants. | Scopus
Show more [+] Less [-]Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices Full text
2020
Pinasseau, Lucie | Wiest, Laure | Volatier, Laurence | Mermillod-Blondin, Florian | Vulliet, Emmanuelle
Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices Full text
2020
Pinasseau, Lucie | Wiest, Laure | Volatier, Laurence | Mermillod-Blondin, Florian | Vulliet, Emmanuelle
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
Show more [+] Less [-]Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices Full text
2020
Pinasseau, Lucie | Wiest, Laure | Volatier, Laurence | Mermillod-Blondin, Florian | Vulliet, Emmanuelle
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hy- drophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological rele- vance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of EmporeTM disk were deployed in GW wells upstream and downstream of SIS, as well as in the storm- water runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concen- trations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
Show more [+] Less [-]Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study Full text
2020
Imran, Muhammad | Khan, Zia Ul Haq | Iqbal, Muhammad Mohsin | Iqbal, Jibran | Shah, Noor Samad | Munawar, Saba | Ali, Shafaqat | Murtaza, Behzad | Naeem, Muhammad Asif | Rizwan, Muhammad
Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study Full text
2020
Imran, Muhammad | Khan, Zia Ul Haq | Iqbal, Muhammad Mohsin | Iqbal, Jibran | Shah, Noor Samad | Munawar, Saba | Ali, Shafaqat | Murtaza, Behzad | Naeem, Muhammad Asif | Rizwan, Muhammad
Chromium (Cr) poses serious consequences on human and animal health due to its potential carcinogenicity. The present study aims at preparing a novel biochar derived from Chenopodium quinoa crop residues (QBC), its activation with magnetite nanoparticles (QBC/MNPs) and strong acid HNO₃ (QBC/Acid) to evaluate their batch and column scale potential to remove Cr (VI) from polluted water. The QBC, QBC/MNPs and QBC/Acid were characterized with SEM, FTIR, EDX, XRD as well as point of zero charge (PZC) to get an insight into their adsorption mechanism. The impact of different process parameters including dose of the adsorbent (1–4 g/L), contact time (0–180 min), initial concentration of Cr (25–200 mg/L) as well as solution pH (2–8) was evaluated on the Cr (VI) removal from contaminated water. The results revealed that QBC/MNPs proved more effective (73.35–93.62-%) for the Cr (VI) removal with 77.35 mg/g adsorption capacity as compared with QBC/Acid (55.85–79.8%) and QBC (48.85–75.28-%) when Cr concentration was changed from 200 to 25 mg/L. The isothermal experimental results follow the Freundlich adsorption model rather than Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherm models. While kinetic adsorption results were well demonstrated by pseudo second order kinetic model. Column scale experiments conducted at steady state exhibited excellent retention of Cr (VI) by QBC, QBC/MNPs and QBC/Acid at 50 and 100 mg Cr/L. The results showed that this novel biochar (QBC) and its modified forms (QBC/Acid and QBC/MNPs) are applicable with excellent reusability and stability under acidic conditions for the practical treatment of Cr (VI) contaminated water.
Show more [+] Less [-]Effect of biochar modified with magnetite nanoparticles and HNO<sub>3</sub> for efficient removal of Cr(VI) from contaminated water: A batch and column scale study Full text
Imran, Muhammad | Khan, Zia Ul Haq | Iqbal, Muhammad Mohsin | Iqbal, Jibran | Shah, Noor Samad | Munawar, Saba | Ali, Shafaqat | Murtaza, Behzad | Naeem, Muhammad Asif | Rizwan, Muhammad
© 2020 Elsevier Ltd Chromium (Cr) poses serious consequences on human and animal health due to its potential carcinogenicity. The present study aims at preparing a novel biochar derived from Chenopodium quinoa crop residues (QBC), its activation with magnetite nanoparticles (QBC/MNPs) and strong acid HNO3 (QBC/Acid) to evaluate their batch and column scale potential to remove Cr (VI) from polluted water. The QBC, QBC/MNPs and QBC/Acid were characterized with SEM, FTIR, EDX, XRD as well as point of zero charge (PZC) to get an insight into their adsorption mechanism. The impact of different process parameters including dose of the adsorbent (1–4 g/L), contact time (0–180 min), initial concentration of Cr (25–200 mg/L) as well as solution pH (2–8) was evaluated on the Cr (VI) removal from contaminated water. The results revealed that QBC/MNPs proved more effective (73.35–93.62-%) for the Cr (VI) removal with 77.35 mg/g adsorption capacity as compared with QBC/Acid (55.85–79.8%) and QBC (48.85–75.28-%) when Cr concentration was changed from 200 to 25 mg/L. The isothermal experimental results follow the Freundlich adsorption model rather than Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherm models. While kinetic adsorption results were well demonstrated by pseudo second order kinetic model. Column scale experiments conducted at steady state exhibited excellent retention of Cr (VI) by QBC, QBC/MNPs and QBC/Acid at 50 and 100 mg Cr/L. The results showed that this novel biochar (QBC) and its modified forms (QBC/Acid and QBC/MNPs) are applicable with excellent reusability and stability under acidic conditions for the practical treatment of Cr (VI) contaminated water.
Show more [+] Less [-]Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils Full text
2020
Lin, Zhongbing | Zou, Xingying | Zhang, Renduo | Nguyen, Christophe | Huang, Jiesheng | Wang, Kang | Wu, Jingwei | Huang, Shuang
Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils Full text
2020
Lin, Zhongbing | Zou, Xingying | Zhang, Renduo | Nguyen, Christophe | Huang, Jiesheng | Wang, Kang | Wu, Jingwei | Huang, Shuang
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R² ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.
Show more [+] Less [-]Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils Full text
2020
Lin, Zhongbing | Zou, Xingying | Zhang, Renduo | Nguyen, Christophe | Huang, Jiesheng | Wang, Kang | Wu, Jingwei | Huang, Shuang | State Key Laboratory of Water Resources and Hydropower Engineering Science ; Wuhan University [China] | Sun Yat-sen University [Guangzhou] (SYSU) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.
Show more [+] Less [-]Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments Full text
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments Full text
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
The ongoing increase of CO₂ in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species’ survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
Show more [+] Less [-]Seawater carbonate chemistry and sperm physiology in Mytilus galloprovincialis Full text
2020
Gallo, Alessandra | Esposito, Maria Consiglia | Cuccaro, Alessia | Buia, Maria-Cristina | Tarallo, Andrea | Monfrecola, Vincenzo | Tosti, Elisabetta | Boni, Raffaele
The ongoing increase of CO2 in the atmosphere is inducing a progressive lowering of marine water pH that is predicted to decrease to 7.8 by the end of this century. In marine environment, physical perturbation may affect reproduction, which is crucial for species' survival and strictly depends on gamete quality. The effects of seawater acidification (SWAc) on gamete quality of broadcast spawning marine invertebrates result largely from experiments of gamete exposure while the SWAc impact in response to adult exposure is poorly investigated. Performing microcosm and in field experiments at a naturally acidified site, we investigated the effects of adult SWAc exposure on sperm quality parameters underlying fertilization in Mytilus galloprovincialis. These animals were exposed to pH 7.8 over 21 days and collected at different times to analyze sperm parameters as concentration, motility, viability, morphology, oxidative status, intra- and extra-cellular pH and mitochondrial membrane potential. Results obtained in the two experimental approaches were slightly different. Under field conditions, we found an increase in total sperm motility and mitochondrial membrane potential on days 7 and 14 from the start of SWAc exposure whereas, in microcosm, SWAc group showed an increase of total motility on day 14. In addition, sperm morphology and intracellular pH were affected in both experimental approaches; whereas oxidative stress was detected only in spermatozoa collected from mussels under natural SWAc. The overall analysis suggests that, in mussels, SWAc toxic mechanism in spermatozoa does not involve oxidative stress. This study represents the first report on mussel sperm quality impairment after adult SWAc exposure, which may affect fertilization success with negative ecological and economic consequences; it also indicates that, although naturally acidified areas represent ideal natural laboratories for investigating the impact of ocean acidification, microcosm experiments are necessary for examining action mechanisms.
Show more [+] Less [-]Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera Full text
2020
Gardon, Tony | Morvan, Lucie | Huvet, Arnaud | Quillien, Virgile | Soyez, Claude | Le Moullac, Gilles | Le Luyer, Jérémy
Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera Full text
2020
Gardon, Tony | Morvan, Lucie | Huvet, Arnaud | Quillien, Virgile | Soyez, Claude | Le Moullac, Gilles | Le Luyer, Jérémy
A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 μm) at 0.25, 2.5, and 25 μg L⁻¹, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.
Show more [+] Less [-]Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera Full text
2020
Gardon, Tony | Morvan, Lucie | Huvet, Arnaud | Quillien, Virgile | Soyez, Claude | Le Moullac, Gilles | Le Luyer, Jeremy
A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 μm) at 0.25, 2.5, and 25 μg L−1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.
Show more [+] Less [-]