Refine search
Results 1181-1190 of 6,560
Particulate matter pollution and hospital outpatient visits for endocrine, digestive, urological, and dermatological diseases in Nanjing, China Full text
2020
Wang, Ce | Zhu, Guangcan | Zhang, Lei | Chen, Kai
Clinical or pathological evidence demonstrated that air pollution could undermine other organ systems of human body besides respiratory and circulation systems. Investigations that directly relate hospital outpatient visits for endocrine (ENDO), digestive (DIGE), urological (UROL), and dermatological (DERM) diseases categories with ambient particulate matter (PM) are still lacking, particularly in heavily polluted cities. Here, we conducted a time-series analysis using 812,624, 1,111,342, 539,803, and 741,662 hospital visits for ENDO, DIGE, UROL, and DERM, respectively, in Nanjing, China from 2013 to 2019. A generalized additive model was applied to estimate the exposure-response associations. Results showed that a 10 μg/m³ increase in PM₂.₅ concentration on lag 0 day was significantly associated with 0.59% (95% CI: 0.30%, 0.88%), 0.43% (0.15%, 0.70%), 0.36% (0.06%, 0.66%), and 0.65% (0.42%, 0.87%) increase for ENDO, DIGE, UROL, and DERM hospital visits, respectively. The estimated effects of PM₁₀ were slightly smaller but still statistically significant. The magnitude and significance of the associations between PM and four health outcomes were sensitive to additional adjustment for co-pollutants. Exposure-response relationships were linear for PM concentrations lower than 100 μg/m³ but the curves became nonlinear across the full range of exposures due to a flatten slope at higher concentrations. We also explored the effect modifications by season (cold or warm), age (5–18, 18–64, 65–74, or 75+ years), and sex (male or female). Results showed that the DERM-related population aged 65 years or older was more vulnerable to PM exposure, compared with the 5 to 17-year age group; the DERM-related population aged 75 years or older and 65 years or older was more vulnerable to PM₂.₅ and PM₁₀ exposure, respectively, compared with the 18 to 64-year age group. Our study provided suggestive evidence that ambient PM pollution was associated with ENDO, DIGE, UROL, and DERM outpatient hospital visits in Nanjing, China.
Show more [+] Less [-]Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified α-FeOOH Full text
2020
Li, Qiao | Li, Rui | Ma, Xinyue | Sarkar, Binoy | Sun, Xiuyun | Bolan, Nanthi
Efficient elimination of As(V) and Sb(V) from wastewater streams has long been a major challenge. Herein, sulfide-modified α-FeOOH adsorbent was fabricated via a simple sulfidation reaction for removing As(V) and Sb(V) from aqueous media. Compared with the pristine α-FeOOH, sulfide-modified α-FeOOH increased the adsorption of As(V) from 153.8 to 384.6 mg/g, and Sb(V) adsorption from 277.8 to 1111.1 mg/g. The enhanced adsorption of both As(V) and Sb(V) was maintained at the pH range from 2 to 11, and was not interfered by various coexisting anions such as Cl⁻, SO₄²⁻, NO₃⁻, SiO₃²⁻ and PO₄³⁻. The adsorption affinity increased from 0.0047 to 0.0915 and 0.0053 to 0.4091 for As(V) and Sb(V), respectively. X-ray photoelectron spectroscopic investigation demonstrated a reductive conversion of As(V) to As(III) during the adsorption process with sulfide-modified α-FeOOH, but with no obvious variation of Sb(V) speciation. While the removal mechanism for As(V) was reduction followed by adsorption via hydroxyl groups, mainly surface complexation was involved in the removal of Sb(V). This study presented a simple strategy to enhance the adsorption capacity and adsorption affinity of α-FeOOH toward As(V)/Sb(V) via sulfide-modification.
Show more [+] Less [-]Concentration and origin of lead (Pb) in liver and bone of Eurasian buzzards (Buteo buteo) in the United Kingdom Full text
2020
Taggart, Mark A. | Shore, Richard F. | Pain, Deborah J. | Peniche, Gabriela | Martinez-Haro, Mónica | Mateo, Rafael | Homann, Julia | Raab, Andrea | Feldmann, Joerg | Lawlor, Alan J. | Potter, Elaine D. | Walker, Lee A. | Braidwood, David W. | French, Andrew S. | Parry-Jones, Jemima | Swift, John A. | Green, Rhys E.
Ingestion of lead (Pb) derived from ammunition used in the hunting of game animals is recognised to be a significant potential source of Pb exposure of wild birds, including birds of prey. However, there are only limited data for birds of prey in Europe regarding tissue concentrations and origins of Pb. Eurasian buzzards (Buteo buteo) found dead in the United Kingdom during an 11-year period were collected and the concentrations of Pb in the liver and femur were measured. Concentrations in the liver consistent with acute exposure to Pb were found in 2.7% of birds and concentration in the femur consistent with exposure to lethal levels were found in 4.0% of individuals. Pb concentration in the femur showed no evidence of consistent variation among or within years, but was greater for old than for young birds. The Pb concentration in the liver showed no effect of the birds’ age, but varied markedly among years and showed a consistent tendency to increase substantially within years throughout the UK hunting season for gamebirds. The resemblance of the stable isotope composition of Pb from buzzard livers to that of Pb from the types of shotgun ammunition most widely-used in the UK increased markedly with increasing Pb concentration in the liver. Stable isotope results were consistent with 57% of the mass of Pb in livers of all of the buzzards sampled being derived from shotgun pellets, with this proportion being 89% for the birds with concentrations indicating acute exposure to Pb. Hence, most of the Pb acquired by Eurasian buzzards which have liver concentrations likely to be associated with lethal and sublethal effects is probably obtained when they prey upon or scavenge gamebirds and mammals shot using Pb shotgun pellets.
Show more [+] Less [-]An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria Full text
2020
Emenike, PraiseGod Chidozie | Tenebe, Imokhai Theophilus | Neris, Jordan Brizi | Omole, David Olugbenga | Afolayan, Olaniyi | Okeke, Chukwueloka Udechukwu | Emenike, Ikechukwu Kingsley
River sediments contain environmental fingerprints that provide useful ecological information. However, the geochemistry of River Atuwara sediments has received less attention over the years. One hundred and twenty-six sediments from 21 locations were collected over a two-season period from River Atuwara, and a detailed investigation of the land use and land cover (LULC) change between 1990 and 2019, analysis of selected toxic and potentially toxic metal(oid)s (TPTM) (Cu, As, Cd, Pb, Ni, Cr, Zn, Fe, Co and Al) using ICP-OES, pollution index assessment, potential source identification (using center log-transformation approach), potential ecological, and human health risk assessment were conducted. The results of the LULC change revealed that the built-up area increased by 95.58 km², at an average rate of 3.186 km²/year over the past 30 years. The mean concentration of metal(oid)s increased in the order of Cd < As < Cr < Pb < Co < Ni < Cu < Zn < Fe < Al, and Cd < As < Cr < Co < Pb < Ni < Cu < Zn < Fe < Al during the dry and wet seasons, respectively. Meanwhile, the statistical analysis of the data spectrum inferred possible contamination from lithological and anthropogenic sources. According to the pollution load index, 90.48% of the sediment samples are polluted by the metal(oid)s. Potential ecological risk assessment identified Ni, As, and Cd as problematic to the ecological community of River Atuwara. Regarding the metal-specific hazard quotient via ingestion route, the risks are in order of Co ≫ As ≫ Pb > Cr > Cd > Al > Ni > Cu > Zn > Fe for both seasons and the carcinogenic risk for children via ingestion route presented a value higher than the safe limits for As, Cd, Cr, and Ni during both seasons. This outcome highlights the need for prompt action towards the restoration of environmental quality for communities surrounding River Atuwara.
Show more [+] Less [-]Formaldehyde and VOC emissions from plywood panels bonded with bio-oil phenolic resins Full text
2020
Jia, Liangliang | Chu, Jie | Li, Jing | Ren, Jing | Huang, Ping | Li, Dongbing
Pyrolysis bio-oil was used to partially substitute for phenol in reacting with formaldehyde for the production of bio-oil phenol formaldehyde plywood (BPFP) panels, with the phenol substitution ratio being 20%, 40%, or 60%. Emissions of formaldehyde and volatile organic compounds (VOCs) from the BPFP panels were studied using solid-phase micro-extraction (SPME) followed by headspace gas chromatography/mass spectrometry (GC/MS), and were compared to those from the phenol formaldehyde plywood (PFP) panels. The sources for VOCs were analyzed, and the health risks associated with the BPFP were examined. Results showed that at 80 °C: (1) Formaldehyde emissions from the BPFP panels were increased to about 4 times that of PFP; (2) VOCs emissions were significantly reduced by up to 84.9% mainly due to the greatly reduced phenol emissions, although the total number of VOCs was increased from 20 to 35; (3) BPFP presents greatly increased carcinogenic and non-carcinogenic health risks because of its much stronger emissions of formaldehyde, N,N-dimethylformamide, benzofuran, furfural, and many chemicals from the bio-oil. It is highly advisable that the health risks are properly taken care of before the wide application of BPFP, or similar bio-oil based engineered wood products.
Show more [+] Less [-]Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH Full text
2020
Muskus, Angelica M. | Krauss, Martin | Miltner, Anja | Hamer, Ute | Nowak, Karolina M.
Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg⁻¹ of ¹³C₃¹⁵N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of ¹³C₃¹⁵N-glyphosate from 13 to 20% (10 °C) to 32–39% (20 °C) and 41–51% (30 °C) and decreased the amounts of extractable ¹³C₃¹⁵N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6–12% (20 °C) and 1.2–3.2% (30 °C). Extractable ¹³C₃¹⁵N-glyphosate increased with higher TOC and higher pH. Total ¹³C-NER were similar in all treatments and at all temperatures (47%–60%), indicating that none of the factors studied affected the amount of total ¹³C-NER. However, ¹³C-bioNER dominated within the ¹³C-NER pool in the control and the 4% TOC treatment (76–88% of total ¹³C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 ¹³C-bioNER were lower (47–61% at 20 °C and 30 °C). In contrast, the ¹⁵N-bioNER pool was small (between 14 and 39% of the ¹⁵N-NER). Thus, more than 60% of ¹⁵N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.
Show more [+] Less [-]Glyphosate exposures and kidney injury biomarkers in infants and young children Full text
2020
Trasande, Leonardo | Aldana, Sandra India | Trachtman, Howard | Kannan, Kurunthachalam | Morrison, Deborah | Christakis, Dimitri A. | Whitlock, Kathryn | Messito, Mary Jo | Gross, Rachel S. | Karthikraj, Rajendiran | Sathyanarayana, Sheela
The goal of this study was to assess biomarkers of exposure to glyphosate and assess potential associations with renal function in children. Glyphosate is used ubiquitously in agriculture worldwide. While previous studies have indicated that glyphosate may have nephrotoxic effects, few have examined potential effects on kidney function in children. We leveraged three cohorts across different phases of child development and measured urinary levels of glyphosate. We evaluated associations of glyphosate with three biomarkers of kidney injury: albuminuria (ACR), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury marker 1 (KIM-1). Multivariable regression analyses examined associations of glyphosate with kidney injury biomarkers controlling for covariates. We identified glyphosate in 11.1% of the total participants. The herbicide was detected more frequently in the neonate population (30%). Multivariable regression models failed to identify significant associations of log-transformed glyphosate with any of the kidney injury biomarkers, controlling for covariates age, sex, and maternal education. While we confirm detectability of glyphosate in children’s urine at various ages and stages of life, there is no evidence in this study for renal injury in children exposed to low levels of glyphosate. Further studies of larger sample size are indicated to better understand putative deleterious effects of the herbicide after different levels of exposure.
Show more [+] Less [-]Response of soil native microbial community to Eschericia coli O157:H7 invasion Full text
2020
Xing, Jiajia | Sun, Shanshan | Wang, Haizhen | Brookes, Philip C. | Xu, Jianming
The presence of Eschericia coli O157:H7 in the natural environment is a serious threat to human health. The native microbial community in soil plays an important role in resisting E. coli O157:H7 invasion. This study examined the responses of soil microbial community to E. coli O157:H7 invasion during a 32-day incubation. The E. coli O157:H7 persisted longer in γ-irradiated soil than non-irradiated soil while glucose addition decreased its persistence in the irradiated soil which was associated with an increasing recovery of the native community. The invasion of E. coli O157:H7 increased soil organic carbon mineralization, an indicator of microbial activity, in both non-irradiated and irradiated soils, while glucose addition significantly promoted the carbon mineralization process. The 16S rRNA sequencing data showed the gradual recovery of the native bacterial population including specific taxa such as proteobacteria and actinobacteria following irradiation. It is concluded that soil microbial function and structure can affect persistence of E. coli O157:H7 and that lower biodiversity of the native community favors its persistence.
Show more [+] Less [-]Critical biomarkers for myocardial damage by fine particulate matter: Focused on PPARα-regulated energy metabolism Full text
2020
Zhang, Ze | Su, Huilan | Ahmed, Rifat Zubair | Zheng, Yuxin | Jin, Xiaoting
Fine particulate matter is one of the leading threats to cardiovascular health worldwide. The exploration of novel and sensitive biomarkers to detect damaging effect of fine particulate matter on cardiac tissues is of great importance in the better understanding of haze-caused myocardial injury. A link between heart failure and PPARα-regulated energy metabolism has been confirmed previously. Herein, the study intends to reveal the critical biomarkers of fine particulate matter induced myocardial damage from the PPARα-regulated energy metabolism. Ambient fine particulate matter induced severe pathological alterations in cultured cells, accompanied by the decrease in ATP content. Additionally, the expressions of CPT1/CPT2 and levels of CS and MDH, crucial members in β-oxidation and the TCA cycle, were significantly decreased. In direct contrast, fine particulate matter increased the biomarkers of glycolysis, as measured by the accumulation of pyruvate and lactate contents, and the enhanced activities of HK and PKM1/2. Importantly, fine particulate matter-exposed cardiomyocytes exhibited the reduced PPARα level, that increased when cardiomyocytes were co-incubation with WY-14643 and fine particulate matter. Simultaneously, the adverse impact of fine particulate matter on critical biomarkers were observed in β-oxidation, TCA cycle and glycolysis, associated with WY-14643 additional complement. Fine particulate matter caused the myocardial energy metabolism transformation through the regulation of PPARα expression and translation, which provided novel and critical biomarkers for haze particles-caused myocardial damage.
Show more [+] Less [-]Quantifying source contributions for indoor CO2 and gas pollutants based on the highly resolved sensor data Full text
2020
Shen, Guofeng | Ainiwaer, Subinuer | Zhu, Yaqi | Zheng, Shuxiu | Hou, Weiying | Shen, Huizhong | Chen, Yilin | Wang, Xilong | Cheng, Hefa | Tao, Shu
Household air pollution is the dominant contributor to population air pollutant exposure, but it is often of less concern compared with ambient air pollution. One of the major knowledge gaps in this field are detailed quantitative source contributions of indoor pollutants, especially for gaseous compounds. In this study, temporally, spatially, and vertically resolved monitoring for typical indoor gases including CO₂, CO, formaldehyde, methane, and the total volatile organic compounds (VOCs) was conducted to address pollution dynamics and major sources in an urban apartment. The indoor concentrations were significantly higher than the simultaneously measured outdoor concentrations. A new statistic approach was proposed to quantitatively estimate contributions of different sources. It was estimated that outdoor CO₂ contributed largely to the indoor CO₂, while main indoor sources were human metabolism and cooking. Outdoor infiltration and cooking contributed almost equally to the indoor CO. The contribution of outdoor infiltration to methane was much higher than that to formaldehyde. Cooking contributed to 24%, 19%, and 25% of indoor formaldehyde, methane, and VOCs, whereas the other unresolved indoor sources contributed 61%, 19%, and 35% of these pollutants, respectively. Vertical measurements showed that the uplifting of hot air masses led to relatively high concentrations of the pollutants in the upper layer of the kitchen and in the other rooms to a lesser extent.
Show more [+] Less [-]