Refine search
Results 121-130 of 3,208
How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure Full text
2015
Bardot, Corinne | Besse-Hoggan, Pascale | Carles, Louis | Le Gall, Morgane | Clary, Guilhem | Chafey, Philippe | Federici, Christian | Broussard, Cédric | Batisson, Isabelle
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
Show more [+] Less [-]Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis Full text
2015
Chen, Hao | Li, Dejun | Gurmesa, Geshere A. | Yu, Guirui | Li, Linghao | Zhang, Wei | Fang, Huajun | Mo, Jiangming
Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle.
Show more [+] Less [-]Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth Full text
2015
Liu, Xue | Yang, Guang-Mei | Guan, Dong-Xing | Ghosh, Piyasa | Ma, Lena Q.
The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB). Standard siderophore assays indicated that PG12-siderophore was catecholate-type. PG12-siderophore was more effective in promoting FeAsO4 dissolution, and Fe and As plant uptake than DFOB. Media soluble Fe and As in PG12 treatment were 34.6 and 3.07 μM, 1.6- and 1.4-fold of that in DFOB. Plant Fe content increased from 2.93 to 6.24 g kg−1 in the roots and As content increased from 14.3 to 78.5 mg kg−1 in the fronds. Besides, P. vittata in PG12 treatment showed 2.6-times greater biomass than DFOB. While P. vittata fronds in PG12 treatment were dominated by AsIII, those in DFOB treatment were dominated by AsV (61–77%). This study showed that siderophore-producing arsenic-resistant rhizobacteria may have potential in enhancing phytoremediation of arsenic-contaminated soils.
Show more [+] Less [-]Impacts of nitrogen deposition on herbaceous ground flora and epiphytic foliose lichen species in southern Ontario hardwood forests Full text
2015
McDonough, Andrew M. | Watmough, Shaun A.
In this study 70 sugar maple (Acer saccharum Marsh.) dominated plots in Ontario, Canada were sampled in the spring of 2009 and 2010 and herbaceous plant and epiphytic foliose lichen species data were compared against modeled N and S deposition data, climate parameters and measured soil and plant/lichen S and N concentration. Herbaceous plant species richness was positively correlated with temperature and indices of diversity (Shannon Weiner and Simpson's Index) were positively correlated with soil pH but not N or S deposition or standardized foliar N scores. Herbaceous community composition was strongly controlled by traditional factors, but there was a small and significant influence of atmospheric S and N deposition. Epiphytic lichen species richness exhibited a strong negative relationship with standardized foliar N score and only one lichen species (Phaeophyscia rubropulchra) was observed at sites with a standardized foliar N score of 0.76.
Show more [+] Less [-]A column evaluation of Appalachian coal mine spoils' temporal leaching behavior Full text
2015
Orndorff, Zenah W. | Daniels, W Lee | Zipper, Carl E. | Eick, Matt | Beck, Mike
Appalachian surface coal mine overburden affects water quality as drainage percolates through spoil disposal fills. This study evaluated leaching potentials of 15 spoils from south-central Appalachia. Most bulk samples were non acid-forming, all were low in total-S, (≤0.34%), and initial saturated paste specific conductance (SC) ranged from 264 to 3560 μS cm−1. Samples were leached unsaturated (40 cycles) and leachates analyzed for pH, SC, and ion composition. Overall, leachates from unweathered spoils were higher in pH and SC than leachates from weathered spoils. Fine-textured spoils generally produced higher SCs than more coarsely textured spoils. Mean SC for all spoils decreased rapidly from an initial peak of 1468 μS cm−1 (±150) to 247 μS cm−1 (±23). Release patterns for most major ions reflected declining SC. Bicarbonate typically increased with successive leaches, replacing sulfate as the dominant anion. Column SC values were comparable to relevant published field data.
Show more [+] Less [-]Combined ecological risks of nitrogen and phosphorus in European freshwaters Full text
2015
Azevedo, Ligia B. | van Zelm, Rosalie | Leuven, Rob S.E.W. | Hendriks, A Jan | Huijbregts, Mark A.J.
Eutrophication is a key water quality issue triggered by increasing nitrogen (N) and phosphorus (P) levels and potentially posing risks to freshwater biota. We predicted the probability that an invertebrate species within a community assemblage becomes absent due to nutrient stress as the ecological risk (ER) for European lakes and streams subjected to N and P pollution from 1985 to 2011. The ER was calculated as a function of species-specific tolerances to NO3− and total P concentrations and water quality monitoring data. Lake and stream ER averaged 50% in the last monitored year (i.e. 2011) and we observed a decrease by 22% and 38% in lake and stream ER (respectively) of river basins since 1985. Additionally, the ER from N stress surpassed that of P in both freshwater systems. The ER can be applied to identify river basins most subjected to eutrophication risks and the main drivers of impacts.
Show more [+] Less [-]Benzonphenone-type UV filters in urine of Chinese young adults: Concentration, source and exposure Full text
2015
Gao, Chong-jing | Liu, Li-yan | Ma, Wanli | Zhu, Ning-zheng | Jiang, Ling | Li, Yi-Fan | Kannan, Kurunthachalam
Benzophenone (BP)-type UV filters are commonly used in our daily life. 2-hydroxy-4-methoxy benzophenone (BP-3), 4-hydroxy benzophenone (4-HBP), 2,4-dihydroxy benzophenone (BP-1), 2,2′,4,4′-tetrahydroxy benzophenone (BP-2) and 2,2′-dihydroxy-4-methoxy benzophenone (BP-8) were measured in urine samples from Chinese young adults. The results indicated that Chinese young adults were widely exposed to BP-3, BP-1, and 4-HBP, with the median concentrations of 0.55, 0.21, and 0.08 ng/mL, respectively. No significant difference was found between males and females, between urban and rural population. The correlations between urinary concentrations provided important indications for sources and metabolic pathways of target compounds. The estimated daily excretion doses of BP-3, 4-HBP, BP-1, BP-2 and BP-8 were 27.2, 2.24, 5.86, 0.76 and 0.30ng/kg-bw/day, respectively. The ratio of exposure to excretion must be considered for the exposure assessment with chemicals based on urine measurement. This is the first nationwide study on BP-derivatives with young adults in China.
Show more [+] Less [-]Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal Full text
2015
He, Yan | Zeng, Fanfeng | Lian, Zhenghua | Xu, Jianming | Brookes, Philip C.
Natural soil montmorillonite and kaolinite nanoparticles (NPs) were tested as efficient sorbents for organic contaminant (OC) removal through mimicking their natural environmental dispersive states. Sorption of both mineral NPs decreased with increasing pH with ionizable pentachlorophenol (PCP), but increased with pH with non-ionizable phenanthrene (PHE), within the pH range of 4–10. In contrast, sorption decreased consistently for both PCP and PHE, as a function of increasing ion concentration (0.001–0.1 mol L−1). Sorption differences were likely caused by the electrolytic conditions dependent upon surface chemistry of OCs and mineral NPs. The results confirmed that the highly dispersive soil mineral NPs would prevail over both engineered NPs and their regular μm-sized colloids for OC removal, due to their ecological advantages and higher sorption properties. This finding provided a realistic assessment of the environmental function of soil natural minerals in water once they are released from soil into OC polluted aqueous systems.
Show more [+] Less [-]RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere Full text
2015
Mynampati, Kalyan Chakravarthy | Lee, Yong Jian | Wijdeveld, Arjan | Reuben, Sheela | Samavedham, Lakshminarayanan | Kjelleberg, Staffan | Swarup, Sanjay
In aquatic systems, one of the non-destructive ways to quantify toxicity of contaminants to plants is to monitor changes in root exudation patterns. In aquatic conditions, monitoring and quantifying such changes are currently challenging because of dilution of root exudates in water phase and lack of suitable instrumentation to measure them. Exposure to pollutants would not only change the plant exudation, but also affect the microbial communities that surround the root zone, thereby changing the metabolic profiles of the rhizosphere. This study aims at developing a device, the RhizoFlowCell, which can quantify metabolic response of plants, as well as changes in the microbial communities, to give an estimate of the stress to which the rhizosphere is exposed. The usefulness of RhizoFlowCell is demonstrated using naphthalene as a test pollutant. Results show that RhizoFlowCell system is useful in quantifying the dynamic metabolic response of aquatic rhizosphere to determine ecosystem health.
Show more [+] Less [-]Screening agrochemicals as potential protectants of plants against ozone phytotoxicity Full text
2015
Saitanis, Costas J. | Lekkas, Dimitrios V. | Agathokleous, Evgenios | Flouri, Fotini
We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol−1 of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants’ protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (−6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants.
Show more [+] Less [-]