Refine search
Results 121-130 of 7,290
Quantitative assessment of two oil-in-ice surface drift algorithms Full text
2022
Martins de Aguiar, Victor Cesar | Dagestad, Knut-Frode | Hole, Lars Robert | Barthel, Knut Sven
The ongoing reduction in extent and thickness of sea ice in the Arctic might result in an increase of oil spill risk due to the expansion of shipping activity and oil exploration shift towards higher latitudes. This work assessed the response of two oil-in-ice surface drift models implemented in an open-source Lagrangian framework. By considering two numerical modeling experiments, our main finding indicates that the drift models provide fairly similar outputs when forced by the same input. It was also found that using higher resolution ice-ocean model does not imply better results. We highlight the role of sea ice in the spread, direction and distance traveled by the oil. The skill metric seems to be sensitive to the drift location, and drift model re-initialization is required to avoid forecast deterioration and ensure the accurate tracking of oil slicks in real operations. | publishedVersion
Show more [+] Less [-]Effects of depth and overgrowth of ephemeral macroalgae on a remote subtidal NE Atlantic eelgrass (Zostera marina) community | Effects of depth and overgrowth of ephemeral macroalgae on a remote subtidal NE Atlantic eelgrass (Zostera marina) community Full text
2022
Baden, Susanne | Fredriksen, Stein | Christie, Hartvig C | Eriander, Louise | Gustafsson, Camilla | Holmer, Marianne | Olesen, Birgit | Thormar, Jonas | Boström, Christoffer
We conducted a short-term field sampling complemented with time integrating stable isotope analysis to holistically investigate status and ecological interactions in a remote NE Atlantic Zostera marina meadow. We found high nutrient water concentrations, large biomass of fast-growing, ephemeral macroalgae, low abundance, and biodiversity of epifauna and a food web with thornback ray (Raja clavata) as intermediate and cod (Gadus morhua) as top predator. We observed no variation with increasing depth (3.5–11 m) except for decreasing shoot density and biomass of Zostera and macroalgae. Our results indicate that the Finnøya Zostera ecosystem is eutrophicated. During the past three to four decades, nutrients from aquaculture have steadily increased to reach 75% of anthropogenic input while the coastal top predator cod has decreased by 50%. We conclude that bottom-up regulation is a predominant driver of change since top-down regulation is generally weak in low density and exposed Zostera ecosystems such as Finnøya. | Effects of depth and overgrowth of ephemeral macroalgae on a remote subtidal NE Atlantic eelgrass (Zostera marina) community | publishedVersion | publishedVersion
Show more [+] Less [-]New insights into submarine tailing disposal for a reduced environmental footprint: Lessons learnt from Norwegian fjords Full text
2022
Ramirez-Llodra, Eva | Trannum, Hilde Cecilie | Andersen, Guri Sogn | Baeten, Nicole | Brooks, Steven | Escudero-Oñate, Carlos | Gundersen, Hege | Kleiv, Rolf Arne | Ibragimova, Olga | Lepland, Aivo | Nepstad, Raymond | Sandøy, Roar | Schaanning, Morten | Shimmield, Tracy | Yakushev, Evgeniy | Ferrando-Climent, Laura | Høgaas, Per Helge
Submarine tailing disposal (STD) in fjords from land-based mines is common practice in Norway and takes place in other regions worldwide. We synthesize the results of a multidisciplinary programme on environmental impacts of STDs in Norwegian fjords, providing new knowledge that can be applied to assess and mitigate impact of tailing disposal globally, both for submarine and deep-sea activities. Detailed geological seafloor mapping provided data on natural sedimentation to monitor depositional processes on the seafloor. Modelling and analytical techniques were used to assess the behaviour of tailing particles and process-chemicals in the environment, providing novel tools for monitoring. Toxicity tests showed biological impacts on test species due to particulate and chemical exposure. Hypersedimentation mesocosm and field experiments showed a varying response on the benthos, allowing to determine the transition zone in the STD impact area. Recolonisation studies indicate that full community recovery and normalisation of metal leakage rates may take several decades due to bioturbation and slow burial of sulfidic tailings. The results are synthesised to provide guidelines for the development of best available techniques for STDs. | publishedVersion
Show more [+] Less [-]Distinct polymer-dependent sorption of persistent pollutants associated with Atlantic salmon farming to microplastics | Distinct polymer-dependent sorption of persistent pollutants associated with Atlantic salmon farming to microplastics Full text
2022
Abihssira Garcia, Isabel Sofia | Kögel, Tanja | Gomiero, Alessio | Kristensen, Torstein | Krogstad, Morten | Olsvik, Pål Asgeir
Interactions of microplastics and persistent organic pollutants (POPs) associated with Atlantic salmon farming were studied to assess the potential role of microplastics in relation to the environmental impact of aquaculture. HDPE, PP, PET and PVC microplastics placed for 3 months near fish farms sorbed POPs from aquafeeds. PET and PVC sorbed significantly higher levels of dioxins and PCBs compared to HDPE, while the levels sorbed to PP were intermediate and did not differ statistically from PET, PVC or HDPE. In addition, the composition of dioxins accumulated in caged blue mussels did not reflect the patterns observed on the microplastics, probably due to polymer-specific affinity of POPs. In conclusion, the results of this study show that microplastics occurring near fish farms can sorb aquafeed-associated POPs and, therefore, microplastics could potentially be vectors of such chemicals in the marine environment and increase the environmental impact of fish farming. | publishedVersion
Show more [+] Less [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea Full text
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González Fernández, Daniel | van Emmerik, Tim | Biología
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macro-plastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
Show more [+] Less [-]Microplastic variability in subsurface water from the Arctic to Antarctica Full text
2022
Pakhomova, Svetlana | Berezina, Anfisa | Lusher, Amy L. | Zhdanov, Igor | Silvestrova, Ksenia | Zavialov, Peter | van Bavel, Bert | Yakushev, Evgeniy
Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 μm–5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m3 (ranging from 0 to 2.6 items/m3), with an equal average abundance for both fragments and fibers (0.34 items/m3). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7–7.5 μg/m3) than the North Atlantic and Siberian Arctic (0.6 μg/m3). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located. | publishedVersion
Show more [+] Less [-]Leaching and degradation of S-Metolachlor in undisturbed soil cores amended with organic wastes Full text
2022
Dollinger, Jeanne | Bourdat-Deschamps, Marjolaine | Pot, Valérie | Serre, Valentin | Bernet, Nathalie | Deslarue, Ghislaine | Montes, Mélanie | Capowiez, Line | Michel, Eric
Organic waste (OW) reuse in agriculture is a common practice fostered by benefits in terms of waste recycling and crop production. However, OW amendments potentially affect the fate of pesticide spread on fields to protect the crops from pests and weeds. The influence of OW on the sorption, degradation, and leaching of pesticides is generally studied for each mechanism separately under artificial laboratory conditions. Our study aims at evaluating the balance of these mechanisms under more realistic conditions to clarify the influence of three common OW amendments on the fate, in soil, of the widely used herbicide S-Metolachlor. We performed leaching experiments in large undisturbed soil cores amended with raw sewage sludge, composted sludge, and digested pig slurry (digestate), respectively. We monitored S-Metolachlor and its two main metabolites MET-OA and MET-ESA in the leachates during a succession of 10 rainfall events over 126 days. We also quantified the remaining S-Metolachlor and metabolites in the soil at the end of the experiments. S-Metolachlor leaching didn't exceed 0.1% of the applied dose with or without OW amendment. Despite a soil organic carbon increase of 3 to 32%, OW amendments did not significantly affect the amount of S-Metolachlor that leached through the soil (0.01 to 0.1%) nor its transformation rate (6.0 to 8.6%). However, it affected the degradation pathways with an increase of MET-OA relative to MET-ESA formed after OW amendment (28 to 54%) compared to the controls (8%). Concentration of S-Metolachlor and metabolites in the leachates of all treatments greatly exceeded the regulatory limit for groundwater intended for human consumption in Europe. These high concentrations were probably the consequence of preferential macropore flow. Colloids had comparable levels in the leachates after S-Metolachlor application. Dissolved organic carbon was also comparable in the controls, digestate, and sludge treatments but was 65% higher in the compost-amended cores. These results, along with a great variability among replicates inherent to experiments performed under realistic conditions, partly explain the limited impact of OW on the transport of S-Metolachlor
Show more [+] Less [-]A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
A review of the cost and effectiveness of solutions to address plastic pollution
2022
Nikiema, Josiane | Asiedu, Zipporah
A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
Plastic usage increases year by year, and the growing trend is projected to continue. However as of 2017, only 9% of the 9 billion tons of plastic ever produced had been recycled leaving large amounts of plastics to contaminate the environment, resulting in important negative health and economic impacts. Curbing this trend is a major challenge that requires urgent and multifaceted action. Based on scientific and gray literature mainly published during the last 10 years, this review summarizes key solutions currently in use globally that have the potential to address at scale the plastic and microplastic contaminations from source to sea. They include technologies to control plastics in solid wastes (i.e. mechanical and chemical plastic recycling or incineration), in-stream (i.e. booms and clean-up boats, trash racks, and sea bins), and microplastics (i.e. stormwater, municipal wastewater and drinking water treatment), as well as general policy measures (i.e. measures to support the informal sector, bans, enforcement of levies, voluntary measures, extended producer responsibility, measures to enhance recycling and guidelines, standards and protocols to guide activities and interventions) to reduce use, reuse, and recycle plastics and microplastics in support of the technological options. The review discusses the effectiveness, capital expenditure, and operation and maintenance costs of the different technologies, the cost of implementation of policy measures, and the suitability of each solution under various conditions. This guidance is expected to help policymakers and practitioners address, in a sustainable and cost-efficient way, the plastic and microplastic management problem using technologies and policy instruments suitable in their local context.
Show more [+] Less [-]A review of the cost and effectiveness of solutions to address plastic pollution Full text
2022
Nikiema, Josiane | Asiedu, Zipporah
Plastic usage increases year by year, and the growing trend is projected to continue. However as of 2017, only 9% of the 9 billion tons of plastic ever produced had been recycled leaving large amounts of plastics to contaminate the environment, resulting in important negative health and economic impacts. Curbing this trend is a major challenge that requires urgent and multifaceted action. Based on scientific and gray literature mainly published during the last 10 years, this review summarizes key solutions currently in use globally that have the potential to address at scale the plastic and microplastic contaminations from source to sea. They include technologies to control plastics in solid wastes (i.e. mechanical and chemical plastic recycling or incineration), in-stream (i.e. booms and clean-up boats, trash racks, and sea bins), and microplastics (i.e. stormwater, municipal wastewater and drinking water treatment), as well as general policy measures (i.e. measures to support the informal sector, bans, enforcement of levies, voluntary measures, extended producer responsibility, measures to enhance recycling and guidelines, standards and protocols to guide activities and interventions) to reduce use, reuse, and recycle plastics and microplastics in support of the technological options. The review discusses the effectiveness, capital expenditure, and operation and maintenance costs of the different technologies, the cost of implementation of policy measures, and the suitability of each solution under various conditions. This guidance is expected to help policymakers and practitioners address, in a sustainable and cost-efficient way, the plastic and microplastic management problem using technologies and policy instruments suitable in their local context.
Show more [+] Less [-]Capturing spatial variability of factors affecting the water allocation plans—a geo-informatics approach for large irrigation schemes Full text
2022
Waqas, M. M. | Waseem, M. | Ali, S. | Hopman, J. W. | Awan, Usman Khalid | Shah, S. H. H. | Shah, A. N.
Capturing spatial variability of factors affecting the water allocation plans—a geo-informatics approach for large irrigation schemes
2022
Waqas, M. M. | Waseem, M. | Ali, S. | Hopman, J. W. | Awan, Usman Khalid | Shah, S. H. H. | Shah, A. N.
Capturing spatial variability of factors affecting the water allocation plans—a geo-informatics approach for large irrigation schemes Full text
2022
Waqas, M. M. | Waseem, M. | Ali, S. | Hopman, J. W. | Awan, Usman Khalid | Shah, S. H. H. | Shah, A. N.
The livelihoods of poor people living in rural areas of Indus Basin Irrigation System (IBIS) of Pakistan depend largely on irrigated agriculture. Water duties in IBIS are mainly calculated based on crop-specific evapotranspiration. Recent studies show that ignoring the spatial variability of factors affecting the crop water requirements can affect the crop production. The objective of the current study is thus to identify the factors which can affect the water duties in IBIS, map these factors by GIS, and then develop the irrigation response units (IRUs), an area representing the unique combinations of factors affecting the gross irrigation requirements (GIR). The Lower Chenab Canal (LCC) irrigation scheme, the largest irrigation scheme of the IBIS, is selected as a case. Groundwater quality, groundwater levels, soil salinity, soil texture, and crop types are identified as the main factors for IRUs. GIS along with gamma design software GS + was used to delineate the IRUs in the large irrigation scheme. This resulted in a total of 84 IRUs in the large irrigation scheme based on similar biophysical factors. This study provided the empathy of suitable tactics to increase water management and productivity in LCC. It will be conceivable to investigate a whole irrigation canal command in parts (considering the field-level variations) and to give definite tactics for management.
Show more [+] Less [-]The coastal waters of the south-east Bay of Biscay a dead-end for neustonic plastics Full text
2022
Basurko, Oihane C. | Ruiz, Irene | Rubio, Anna | Beldarrain, Beatriz | Kukul, Deniz | Cózar Cabañas, Andrés | Galli, Matteo | Destang, Théo | Larreta, Joana | Biología
Numerical models point to the south-east Bay of Biscay as a convergence area for floating particles, including plastics. The few existing studies on plastic abundance in the area mainly focus on open waters and yet information on the coastal area is limited. To fill this gap, neustonic samples were taken along the coastal waters of the south-east Bay of Biscay (2017-2020) to define the spatial distribution of plastic abundances and composition. Results show an average plastic abundance of 739,395 +/- 2,625,271 items/km(2) (998 +/- 4338 g/km(2)). French waters were more affected, with five times higher plastic abundances than Spanish coasts. Microplastics represented 93 % of the total abundance of plastic items (28 % in weight), mesoplastics 7 % (26 %) and macroplastics 1 % (46 %). This study demonstrates that this area is a hotspot for plastic with levels in coastal waters similar to those in the Mediterranean Sea or other litter aggregation areas.
Show more [+] Less [-]