Refine search
Results 1221-1230 of 5,132
Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: Inhibition of hydrolytic acidification and enrichment of antibiotic resistome
2018
Tian, Zhe | Zhang, Yu | Yang, Min
We evaluated the chronic impact of oxytetracycline (OTC) on performance and antibiotic resistance development during the mesophilic anaerobic digestion (AD) of antibiotic-containing biomass. Mesophilic AD was conducted in a completely stirred tank reactor by constantly feeding municipal excess sludge spiked with increasing concentrations of OTC (0–1000 mg L−1) under a solid retention time of 20 days over a period of 265 days. Results showed that methane generation of mesophilic AD was inhibited when the OTC concentration in digested sludge was increased to around 18,000 mg kg−1 (OTC dose, 1000 mg L−1), due to the inhibition of fermenting and acidogenic bacteria. Metagenomic sequencing and high-throughput quantitative PCR analysis demonstrated that tetracycline resistance genes were the most dominant type (38.47–43.76%) in the resistome, with tetG, tetX, tetM, tetR, tetQ, tetO, and tetL as the dominant resistant subtypes throughout the whole experimental period. The relative abundance of these tet genes increased from 2.10 × 10−1 before spiking OTC (OTC concentration in digested sludge, 8.97 mg kg−1) to 2.83 × 10−1 (p < 0.05) after spiking OTC at a dose of 40 mg L−1 (OTC concentration in digested sludge, 528.52 mg kg−1). Furthermore, mobile genetic elements, including integrons, transposons, and plasmids, were also enriched with the increase in OTC dose. Based on partial canonical correspondence analysis, the contributions of horizontal (mobile element alteration) and vertical (bacterial community shift) gene transfer to antibiotic resistome variation were 29.35% and 21.51%, respectively. Thus, considering the inhibition of hydrolytic acidification and enrichment of antibiotic resistome, mesophilic AD is not suggested to directly treat the biomass containing OTC concentration higher than 200 mg L−1.
Show more [+] Less [-]Polyfluorinated iodine alkanes regulated distinct breast cancer cell progression through binding with estrogen receptor alpha or beta isoforms
2018
Song, Wenting | Liu, Qian S. | Sun, Zhendong | Yang, Xiaoxi | Zhou, Qunfang | Jiang, Guibin
Polyfluorinated iodine alkanes (PFIs) are a kind of emerging chemicals with endocrine disrupting effects. Based on the different binding preferences of PFIs to estrogen receptor alpha and beta isoforms (ERα and β), two representative PFIs, dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were selected to evaluate their effects on the proliferation of two kinds of breast cancer cells with different ERα/β expression levels, MCF-7 and T47D. The cell viability assay showed PFHxDI could cause higher cellular toxicity than did PFHxI in both MCF-7 and T47D. MCF-7 with relatively higher ERα/β expression ratio was more vulnerable to the cytotoxic treatments of PFHxI and PFHxDI when compared with T47D cells with relatively lower ERα/β expression ratio. EdU incorporation and cell cycle analysis revealed that, similar to 17β-estrodiol (E₂), non-cytotoxic levels of PFHxDI could significantly promote the proliferation of MCF-7 by increasing cell population at S phase (p < 0.01), while T47D proliferation was not influenced by PFHxI exposure due to cell cycle arrest at G2/M phase. The cellular responses caused by estrogenic PFIs were dominantly mediated by their preferential binding affinities for ER isoforms, which would be helpful in the accurate assessment for their potential influences on the breast cancer progression.
Show more [+] Less [-]Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water
2018
Merel, Sylvain | Benzing, Saskia | Gleiser, Carolin | Di Napoli-Davis, Gina | Zwiener, Christian
Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r² of 0.32 for cyproconazole and r² of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r² of 0.86 for carbamazepine and r² of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties.
Show more [+] Less [-]Source apportionment of PM2.5 organic carbon in the San Joaquin Valley using monthly and daily observations and meteorological clustering
2018
Skiles, Matthew J. | Lai, Alexandra M. | Olson, Michael R. | Schauer, James J. | de Foy, Benjamin
Two hundred sixty-three fine particulate matter (PM2.5) samples collected on 3-day intervals over a 14-month period at two sites in the San Joaquin Valley (SJV) were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and organic molecular markers. A unique source profile library was applied to a chemical mass balance (CMB) source apportionment model to develop monthly and seasonally averaged source apportionment results. Five major OC sources were identified: mobile sources, biomass burning, meat smoke, vegetative detritus, and secondary organic carbon (SOC), as inferred from OC not apportioned by CMB. The SOC factor was the largest source contributor at Fresno and Bakersfield, contributing 44% and 51% of PM mass, respectively. Biomass burning was the only source with a statistically different average mass contribution (95% CI) between the two sites. Wintertime peaks of biomass burning, meat smoke, and total OC were observed at both sites, with SOC peaking during the summer months. Exceptionally strong seasonal variation in apportioned meat smoke mass could potentially be explained by oxidation of cholesterol between source and receptor and trends in wind transport outlined in a Residence Time Analysis (RTA). Fast moving nighttime winds prevalent during warmer months caused local emissions to be replaced by air mass transported from the San Francisco Bay Area, consisting of mostly diluted, oxidized concentrations of molecular markers. Good agreement was observed between SOC derived from the CMB model and from non-biomass burning WSOC mass, suggesting the CMB model is sufficiently accurate to assist in policy development. In general, uncertainty in monthly mass values derived from daily CMB apportionments were lower than that of CMB results produced with monthly marker composites, further validating daily sampling methodologies.Strong seasonal trends were observed for biomass and meat smoke OC apportionment, and monthly mass averages had lowest uncertainty when derived from daily CMB apportionments.
Show more [+] Less [-]Removal, biotransformation and toxicity variations of climbazole by freshwater algae Scenedesmus obliquus
2018
Pan, Chang-Gui | Peng, Feng-Jiao | Ying, Guang-Guo
Climbazole (CBZ) is an antibacterial and antifungal agent widely used in personal care products. In this study, we investigated the interactions between climbazole (CBZ) and freshwater microalgae Scenedesmus obliquus (S. obliquus). Dose-effect relationships between CBZ concentrations and growth inhibitions or chlorophyll a content were observed. After 12 days of incubation, the algae density and chlorophyll a content in 2 mg/L treatment group was 56.6% and 15.8% of those in the control group, respectively. Biotransformation was the predominant way to remove CBZ in the culture solution, whereas the contribution of bioaccumulation and bioadsorption were negligible. More than 88% of CBZ was removed by S. obliquus across all treatments after 12 days of incubation, and the biotransformation of CBZ followed the first order kinetic model with half-lives of approximately 4.5 days at different treatments. CBZ-alcohol (CBZ-OH) was the only biotransformation product identified in algal solution. Moreover, the toxicity of biotransformation products was much lower than its corresponding precursor compound (CBZ). The results of this study revealed that S. obliquus might have a great impact on the environmental fates of CBZ and could be further applied to remove organic pollutants in aquatic environment.
Show more [+] Less [-]Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA
2018
Gong, Yufeng | Werth, Charles J. | He, Yaxue | Su, Yiming | Zhang, Yalei | Zhou, Xuefei
Hexavalent chromium (Cr(VI)) reduction by Geobacter sulfurreducens PCA was evaluated in batch experiments, and the form and amounts of intracellular and extra-cellular Cr(VI) reduction products were determined over time. The first-order Cr(VI) reduction rate per unit mass of cells was consistent for different initial cell concentrations, and approximately equal to (2.065 ± 0.389) x 10−9 mL CFU−1 h−1. A portion of the reduced Cr(VI) products precipitated on Geobacter cell walls as Cr(III) and was bound via carboxylate functional groups, a portion accumulated inside Geobacter cells, and another portion existed as soluble Cr(III) or organo-Cr(III) released to solution. A mass balance analysis of total chromium in aqueous media, on cell walls, and inside cells was determined as a function of time, and with different initial cell concentrations. Mass balances were between 92% and 98%, and indicated Cr(VI) reduction products accumulate more on cell walls and inside cells with time and with increasing initial cell concentration, as opposed to particulates in aqueous solution. Reduced Cr(VI) products both in solution and on cell surfaces appear to form organo-Cr(III) complexes, and our results suggest that such complexes are more stable to reoxidation than aqueous Cr(III) or Cr(OH)3. Chromium inside cells is also likely more stable to reoxidation, both because it can form organic complexes, and it is separated by the cell membrane from solution conditions. Hence, Cr(VI) reduction products in groundwater during bioremediation may become more stable against re-oxidation, and may pose a lower risk to human health, over time and with greater initial biomass densities.
Show more [+] Less [-]Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments
2018
Sha, Bo | Dahlberg, Anna-Karin | Wiberg, Karin | Ahrens, Lutz
Indoor air samples were collected from private homes and various occupational indoor environments using passive air sampler and analysed for fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methyl siloxanes (cVMSs). The aim was to investigate their occurrence in indoor air, factors that may affect their presence and human daily exposure dose (DED) via inhalation. In general, levels of cVMSs were 3–4 orders of magnitude greater than the other compound classes. OPFRs concentration was found significantly higher than BFRs in indoor air. The most abundant compounds in each chemical class were 8:2 FTOH, 2,4,6-TBP, TNBP and TCEP and decamethylcyclopentasiloxane (D5). Home samples contained higher level of FTOHs, BFRs and cVMSs than occupational environments, whereas concentration of OPFRs in office samples were higher. BFRs concentrations were significantly correlated with building age and with the number of electronic/electrical devices at the sampling sites. Moreover, significantly lower levels of FTOHs and cVMSs were observed in rooms with forced-ventilation system. Estimated DED via inhalation was significantly higher at home than in office and the total DED was on average 3–5 orders of magnitude lower than the reference value.
Show more [+] Less [-]Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin
2018
Shrestha, Narayan Kumar | Wang, Junye
An ecosystem in a cold climate river basin is vulnerable to the effects of climate change affecting permafrost thaw and glacier retreat. We currently lack sufficient data and information if and how hydrological processes such as glacier retreat, snowmelt and freezing-thawing affect sediment and nutrient runoff and transport, as well as N₂O emissions in cold climate river basins. As such, we have implemented well-established, semi-empirical equations of nitrification and denitrification within the Soil and Water Assessment Tool (SWAT), which correlate the emissions with water, sediment and nutrients. We have tested this implementation to simulate emission dynamics at three sites on the Canadian prairies. We then regionalized the optimized parameters to a SWAT model of the Athabasca River Basin (ARB), Canada, calibrated and validated for streamflow, sediment and water quality. In the base period (1990–2005), agricultural areas (2662 gN/ha/yr) constituted emission hot-spots. The spring season in agricultural areas and summer season in forest areas, constituted emission hot-moments. We found that warmer conditions (+13% to +106%) would have a greater influence on emissions than wetter conditions (−19% to +13%), and that the combined effect of wetter and warmer conditions would be more offsetting than synergetic. Our results imply that the spatiotemporal variability of N₂O emissions will depend strongly on soil water changes caused by permafrost thaw. Early snow freshet leads to spatial variability of soil erosion and nutrient runoff, as well as increases of emissions in winter and decreases in spring. Our simulations suggest crop residue management may reduce emissions by 34%, but with the mixed results reported in the literature and the soil and hydrology problems associated with stover removal more research is necessary. This modelling tool can be used to refine bottom-up emission estimations at river basin scale, test plausible management scenarios, and assess climate change impacts including climate feedback.
Show more [+] Less [-]The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM2.5 in Beijing during the 2014 APEC summit
2018
Ren, Hong | Kang, Mingjie | Ren, Lujie | Zhao, Yue | Pan, Xiaole | Yue, Siyao | Li, Linjie | Zhao, Wanyu | Wei, Lianfang | Xie, Qiaorong | Li, Jie | Wang, Zifa | Sun, Yele | Kawamura, Kimitaka | Fu, Pingqing
Organic tracers are useful for investigating the sources of carbonaceous aerosols but there are still no adequate studies in China. To obtain insights into the diurnal variations, properties, and the influence of regional emission controls on carbonaceous aerosols in Beijing, day-/nighttime PM₂.₅ samples were collected before (Oct. 15th – Nov. 2nd) and during (Nov. 3rd – Nov. 12th) the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Eleven organic compound classes were analysed using gas chromatography/mass spectrometry (GC/MS). In addition, the stable carbon isotope ratios (δ¹³CTC) of total carbon (TC) were detected using an elemental analyser/isotope ratio mass spectrometry (EA/irMS). Most of the organic compounds were more abundant during the night than in the daytime, and their concentrations generally decreased during the APEC. These features were associated with the strict regional emission controls and meteorological conditions. The day/night variations of δ¹³CTC were smaller during the APEC than those before the APEC the summit, suggesting that regionally transported aerosols are potentially played an important role in the loading of organic aerosols in Beijing before the APEC summit. The source apportionment based on the organic tracers suggested that biomass burning, plastic and microbial emissions, and fossil fuel combustion were important sources of organic aerosols in Beijing. Furthermore, a similar contribution of biomass burning to OC before and during the APEC suggests biomass burning was a persistent contributor to PM₂.₅ in Beijing and its surroundings.
Show more [+] Less [-]An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries
2018
Cabral, Ana Caroline | Stark, Jonathan S. | Kolm, Hedda E. | Martins, César C.
Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators. Logistic regression was performed with all data and separately for two sampling seasons, using 800 and 100 MPN 100 mL⁻¹ of E. coli and enterococci, respectively, as the microbiological limits of sewage contamination. Threshold values of coprostanol varied depending on the FIB and season, ranging between 1.00 and 2.23 μg g⁻¹ SPM. The range of threshold values of coprostanol for SPM are relatively higher and more variable than those suggested in literature for sediments (0.10–0.50 μg g⁻¹), probably due to higher concentration of coprostanol in SPM than in sediment. Temperature may affect the relationship between microbiological indicators and coprostanol, since the threshold value of coprostanol found here was similar to tropical areas, but lower than those found during winter in temperate areas, reinforcing the idea that threshold values should be calibrated for different climatic conditions.
Show more [+] Less [-]