Refine search
Results 1251-1260 of 1,546
Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review Full text
2012
Murray, Audrey | Örmeci, Banu
Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible. This paper presents a review on recent research results on molecularly imprinted (MIP) and non-imprinted (NIP) polymers and evaluates their potential as a treatment method for the removal of emerging contaminants from water and wastewater. It also discusses the relative benefits and limitations of using MIP or NIP for water and wastewater treatment. MIP, and in particular NIP, offer promising applications for wastewater treatment, but their toxicity and possible health effects should be carefully studied before they are considered for drinking water treatment. More research is also required to determine how best to incorporate MIP and NIP in treatment plants.
Show more [+] Less [-]Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies Full text
2012
Karthikeyan, S. | Ezhil Priya, M. | Boopathy, R. | Velan, M. | Mandal, A. B. | Sekaran, G.
BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. MATERIALS AND METHODS: Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. RESULTS AND DISCUSSION: The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van’t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV–visible spectroscopy, and cyclic voltammetry. CONCLUSIONS: The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time–4 h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.
Show more [+] Less [-]Histopathological effects of carbaryl on testes of snake-eyed lizard, Ophisops elegans Full text
2012
Cakici, Ozlem | Akat, Esra
BACKGROUND, AIM AND SCOPE: Due to their ecological niche and insectivore nature, lizards are of increased risk of exposure to pesticides in agricultural areas. In addition to their potential direct effects on non-target species, insecticides can also result in indirect impacts on lizard population by reducing their food source. Carbaryl is a common insecticide that is widely used in areas of Turkey that are home to a variety of reptiles. However, to date, little is known about the potential effects of the exposure of reptiles such as lizards or snakes to this pesticide. The aim of the study was to investigate toxic effects of carbaryl on the testes of snake-eyed lizard, Ophisops elegans that is common to regions in Turkey where Carbaryl is applied and that it can be easily cultured in the laboratory. MATERIAL AND METHODS: Adult male lizards were exposed to carbaryl once by oral gavage in concentrations of 2.5, 25 and 250 μg/g. After 96 h, lizards were euthanized and dissected. Histopathological changes were detected by randomly counting 100 tubules in each lizard. Seminiferous tubules were categorized as normal, sloughing and disorganized tubules. Diameters of tubules were also measured. The differences in histopathological changes and tubule diameters were compared for statistical significance by one-way ANOVA, using SPSS 16.0. RESULTS AND DISCUSSION: Histopathological changes were more prominent in medium- (25 μg/g) and high-dose (250 μg/g) groups than in the low-dose (2.5 μg/g) group. In the medium-dose group, the hexagonal appearance of most tubules disappeared, and they took on an oval shape. Sloughing was the characteristic tubule appearance of the medium group. In the high-dose group, significant increases in the number of disorganized tubules and prominence of haemorrhages was observed. CONCLUSION: Carbaryl caused histopathological defects on the testes of O. elegans, so it is clear that carbaryl affects male fertility in O. elegans.
Show more [+] Less [-]Abundance and diversity of Sphingomonas in Shenfu petroleum-wastewater irrigation zone, China Full text
2012
Zhou, Lisha | Li, Hui | Zhang, Ying | Wang, Yafei | Han, Siqin | Xu, Hui
INTRODUCTION: Members of the genus Sphingomonas have raised increasing attention due to their ability for polycyclic aromatic hydrocarbon (PAH) degradation and their ubiquity in the environment. However, few studies have revealed the ecological information on the abundance and diversity of Sphingomonas in the environment. MATERIALS AND METHODS: A primer set targeting the Sphingomonas 16S rRNA gene was designed. The specificity was tested with four petroleum-contaminated soils by construction of clone libraries and further restriction fragment length polymorphism analysis. Subsequently, real time PCR and denaturing gradient gel electrophoresis (DGGE) assays were used to evaluate the abundance and diversity of Sphingomonas in the Shenfu irrigation zone, China. RESULTS: A genus-specific primer set SA/429f-933r was developed, and 90% of the sequences retrieved from soil clone libraries were related to Sphingomonas. Members of the genus Sphingomonas were detected in all soils, and significant correlation (p < 0.05) was observed between the Sphingomonas abundance and the ratios of PAHs to total petroleum hydrocarbon (TPH). DGGE profiles revealed Sphingomonas population structures differed greatly in different sites. The Sphingomonas diversity was not statistically (p > 0.05) correlated with the contamination level. Some of the soil-derived sequences were not grouped phylogenetically with sequences of known Sphingomonas, indicating new members of the Sphingomonas genus might be present in the Shenfu irrigation zone. CONCLUSION: The newly designed Sphingomonas-selective primers were specific and practicable for analyzing Sphingomonas abundance and diversity in petroleum-contaminated soils. The significant correlation between the abundance and the ratios of PAHs to TPH suggested an important role of Sphingomonas in PAH bioremediation.
Show more [+] Less [-]Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15 Full text
2012
Du, Lin-Na | Zhao, Ming | Li, Gang | Zhao, Xiao-Ping | Zhao, Yu-Hua
PURPOSE: Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. METHODS: Optical microscope and UV–visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett–Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. RESULTS: The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl₂ and MgCl₂, and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. CONCLUSION: Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.
Show more [+] Less [-]Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe Full text
2012
Mueller, Nicole C. | Braun, Jürgen | Bruns, Johannes | Černík, Miroslav | Rissing, Peter | Rickerby, David | Nowack, Bernd
PURPOSE: Nanoscale zero valent iron (NZVI) is emerging as a new option for the treatment of contaminated soil and groundwater targeting mainly chlorinated organic contaminants (e.g., solvents, pesticides) and inorganic anions or metals. The purpose of this article is to give a short overview of the practical experience with NZVI applications in Europe and to present a comparison to the situation in the USA. Furthermore, the reasons for the difference in technology use are discussed. METHOD: The results in this article are based on an extensive literature review and structured discussions in an expert workshop with experts from Europe and the USA. The evaluation of the experiences was based on a SWOT (strength, weakness, opportunity, threat) analysis. RESULT: There are significant differences in the extent and type of technology used between NZVI applications in Europe and the USA. In Europe, only three full-scale remediations with NZVI have been carried out so far, while NZVI is an established treatment method in the USA. Bimetallic particles and emulsified NZVI, which are extensively used in the USA, have not yet been applied in Europe. Economic constraints and the precautionary attitude in Europe raise questions regarding whether NZVI is a cost-effective method for aquifer remediation. Challenges to the commercialization of NZVI include mainly non-technical aspects such as the possibility of a public backlash, the fact that the technology is largely unknown to consultants, governments and site owners as well as the lack of long-term experiences. CONCLUSION: Despite these concerns, the results of the current field applications with respect to contaminant reduction are promising, and no major adverse impacts on the environment have been reported so far. It is thus expected that these trials will contribute to promoting the technology in Europe.
Show more [+] Less [-]Co-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis Full text
2012
Fontaine, Barbara | Piccolo, Alessandro
INTRODUCTION: A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin. MATERIALS AND METHODS: Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HPSEC), the unbound PCP recovered from reacting humic solutions was evaluated by gas-chromatography/electron capture detector, and the oxidative catalyzed coupling of pentafluorophenol (PFP) into humic matter was assessed by liquid-state 19F-NMR spectroscopy. HPSEC showed that the catalyzed oxidative coupling between PCP and humic molecules increased the apparent weight-average molecular weight (M w) values in both humic substances. RESULTS AND DISCUSSION: HPSEC further indicated that the co-polymerization reaction turned the loosely bound humic supramolecular structures into more stable conformations, which could no longer be disrupted by the disaggregating effect of acetic acid. The occurrence of covalent linkages established between PCP and humic molecules was also suggested by the very little amount of PCP found free in solution after the catalyzed co-polymerization. 19F-NMR spectroscopy suggested that also PFP could be oxidatively coupled to humic materials. PFP-humic co-polymerization reaction produced 19F-spectra with many more 19F signals and wider chemical shifts spread than for PFP alone or PFP subjected to catalyzed coupling without humic matter. CONCLUSIONS: These findings show that biomimetic iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the co-polymerization reaction may become a useful technology to remediate soils and waters contaminated by polyhalogenated phenols and their analogues.
Show more [+] Less [-]Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant Full text
2012
Salgado, R. | Marques, R. | Noronha, J. P. | Carvalho, G. | Oehmen, A. | Reis, M. A. M.
PURPOSE: This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign. METHODS: Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP. RESULTS: Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank. CONCLUSIONS: The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.
Show more [+] Less [-]Classification of dimension stone wastes Full text
2012
Karaca, Zeki | Pekin, Abdülkerim | Deliormanlı, Ahmet Hamdi
PURPOSE: For countries in which the stone industry is well developed, opposition to quarry and plant waste is gradually increasing. The primary step for waste control and environmental management is to define the problem of concern. In this study, natural building stone wastes were classified for the first time in the literature. METHODS: Following on-site physical observations and research at more than 50 quarries and 20 plants, stone wastes were classified as (1) solid, (2) dust and (3) semi-slurry, slurry and cake. CONCLUSIONS: As a result of this study, the characteristics of wastes, their main environmental threats and the industries in which wastes could be used were defined for each group.
Show more [+] Less [-]Pesticide removal from waste spray-tank water by organoclay adsorption after field application: an approach for a formulation of cyprodinil containing antifoaming/defoaming agents Full text
2012
Suciu, Nicoleta A. | Ferrari, Tommaso | Ferrari, Federico | Trevisan, Marco | Capri, Ettore
PURPOSE: Many reports on purification of water containing pesticides are based on studies using unformulated active ingredients. However, most commercial formulations contain additives/adjuvants or are manufactured using microencapsulation which may influence the purification process. Therefore, the main objective of this work was to develop and test a pilot scheme for decontaminating water containing pesticides formulated with antifoaming/defoaming agents. METHODS: The Freundlich adsorption coefficients of formulation of cyprodinil, a new-generation fungicide, onto the organoclay Cloisite 20A have been determined in the laboratory in order to predict the efficiency of this organoclay in removing the fungicide from waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the purification scheme. RESULTS: The laboratory adsorption tests successfully predicted the efficiency of the pilot purification system, which removed more than 96% cyprodinil over a few hours. The passing of the organoclay–cyprodinil suspension through a layer of biomass gave 100% recovery of the organoclay at the surface of the biomass after 1 week. The organoclay was composted after the treatment to try to break down the fungicide so as to allow safe disposal of the waste, but cyprodinil was not significantly dissipated after 90 days. CONCLUSION: The purification scheme proved to be efficient for decontaminating water containing cyprodinil formulated with antifoaming/defoaming agents, but additional treatments for the adsorbed residues still appear to be necessary even for a moderately persistent pesticide such as cyprodinil. Furthermore, a significant conclusion of this study concerns the high influence of pesticide formulations on the process of purification of water containing these compounds, which should be taken into account when developing innovative decontamination schemes, especially for practical applications.
Show more [+] Less [-]