Refine search
Results 1251-1260 of 6,643
Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria☆ Full text
2020
Hu, Jinlong | Zhou, Yuhao | Lei, Ziyan | Liu, Guanglong | Hua, Yumei | Zhou, Wenbing | Wan, Xiaoqiong | Zhu, Duanwei | Zhao, Jianwei
Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH₄⁺ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO₃⁻ showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH₄⁺/NO₃⁻ being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.
Show more [+] Less [-]Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity Full text
2020
Li, Ming | Xu, Guanghui | Yang, Xiutao | Zeng, Ying | Yu, Yong
In this study, we explored the influence of two metal oxide nanoparticles, nano CuO and nano ZnO (10, 50, 250 mg/kg), on accumulation of bifenthrin (100 μg/kg) in earthworms (Eisenia fetida) and its mechanism. The concentrations of bifenthrin in earthworms from binary exposure groups (bifenthrin + CuO and bifenthrin + ZnO) reached up to 23.2 and 28.9 μg/g, which were 2.65 and 3.32 times of that in bifenthrin exposure group without nanoparticles, respectively, indicating that nanoparticles facilitated the uptake of bifenthrin in earthworms. The contents of biomarkers (ROS, SOD, and MDA) in earthworms indicated that nanoparticles and bifenthrin caused damage to earthworms. Ex vivo test was utilized to investigate the toxic effects of the pollutants to cell membrane of earthworm coelomocytes and mechanism of increased bifenthrin accumulation. In ex vivo test, cell viability in binary exposure groups declined up to 30% and 21% compared to the control group after 24 h incubation, suggesting that coelomocyte membrane was injured by the pollutants. We conclude that nanoparticles damage the body cavity of earthworms, and thus lead to more accumulation of bifenthrin in earthworms. Our findings provide insights into the interactive accumulation and toxicity of nanoparticles and pesticides to soil organisms.
Show more [+] Less [-]Influence on Uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior Full text
2020
Zhang, Yuan-yuan | Lv, Jun-wen | Dong, Xue-jie | Fang, Qi | Tan, Wen-fa | Wu, Xiao-yan | Deng, Qin-wen
Soil contains large amounts of humic acid (HA), iron ions and manganese ions, all of which affect U(VI) migration in the soil. HA interacts with iron and manganese ions to form HA salts (called HA-Fe and HA-Mn in this paper); however, the effects of HA-Fe and HA-Mn on the migration of U(VI) is not fully understood. In this study, HA-Fe and HA-Mn were compounded by HA interactions with ferric chloride hexahydrate and manganese chloride tetrahydrate, respectively. The influence of HA, HA-Fe and HA-Mn on U(VI) immobilization and migration was investigated by bath adsorption experiments and adsorption-desorption experiments using soil columns. The results showed that the presence of HA, HA-Fe and HA-Mn retarded the migration of U(VI) in soil. Supported by X-ray photoelectron spectroscopy (XPS) and BCR sequential extraction analyses, a plausible explanation for the retardation was that HA-Fe and HA-Mn could reduce hexavalent uranium to stable tetravalent uranium and increase the specific gravity of Fe/Mn oxide-bound uranium and organic/sulfide-bound uranium, which made it difficult for them to longitudinally migrate in soil. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and surface area and pore size analyses indicated that the complex formed between the hydroxyl, amino and carboxyl groups of HA-Fe and U(VI) increased the crystallinity of HA-Fe. The reaction between U(VI) and the hydroxyl, amino, aldehyde, keto and chlorine-containing groups of HA-Mn had no effect on the crystallinity of HA-Mn. Notably, the column desorption experiment found that the U(VI) immobilized in the soil remigrated under the effect of rain leaching, and acid rain promoted uranium remigration better than neutral rain. The findings provide some guidance for the decommissioning disposal of uranium contaminated site and it’s risk assessments.
Show more [+] Less [-]Identification of microplastics in the sediments of southern coasts of the Caspian Sea, north of Iran Full text
2020
Mehdinia, Ali | Dehbandi, Reza | Hamzehpour, Ali | Rahnama, Reza
Microplastic (MPs) pollution in the aquatic and terrestrial environments has caught many attentions in the scientific literatures. Currently, no information is available about MPs pollution in Caspian Sea, the largest lake in the world. This study indicates the first report on the MPs pollution in the sediments of the southern Caspian coastal zones, northern Iran. Density separation method was conducted on 17 surficial sediments. The combination of observation techniques including SEM-EDS analysis, polarized light microscopy and Raman micro-spectroscopy were used to identify MPs. The abundance and size of microplastics in the samples ranged between 25 and 330 items/kg and 250–500 μm, respectively. Fibers constituted the most common MPs shape and polystyrene (PS) and polyethylene (PE) were major polymer types in the samples. The distribution of MPs in the study area reflected a patchy and irregular spatial pattern implying that the higher MPs concentration are near mouth of permanent rivers and in the regions with higher level of the fishing and tourism activities. The results showed the wide occurrence of MPs in the sediments of the world’s largest lake which extend the knowledge on MPs pollution in the marine system. We also recommend further research on microplastics in different compartments of Caspian Sea to inform policy discussions and the development of appropriate management responses.
Show more [+] Less [-]Distribution of organophosphate esters between the gas phase and PM2.5 in urban Dalian, China Full text
2020
Wang, Yan | Bao, Meijun | Tan, Feng | Qu, Zhenping | Zhang, Yuwei | Chen, Jingwen
We investigated the concentrations and seasonal variations of organophosphate esters (OPEs) in the gas phase and PM₂.₅ (particulate matter with an aerodynamic diameter <2.5 μm) in an urban area of Dalian, China, as well as their gas-particle partitioning. The total concentrations of OPEs in the gas phase were in the range of 0.056–6.38 ng/m³ with the mean concentration of 0.83 ± 1.24 ng/m³, while the concentrations of OPEs in the PM₂.₅ were in the range of 0.32–3.46 ng/m³ with the mean concentration of 1.21 ± 0.67 ng/m³. Tris-(1-chloro-2-propyl) phosphate (TCIPP) was the dominant congener in the gaseous phase, followed by tris-(2-chloroethyl) phosphate (TCEP) and tri-n-butylphosphate (TNBP), whereas TCEP was the dominant species in the PM₂.₅, followed by TCIPP and triphenyl phosphate (TPHP). Seasonality was discovered for OPEs in both gas phase and PM₂.₅ with their concentrations higher in hot seasons, which may due to the temperature-driven emission or gas-particle partitioning. The PM₂.₅-bound fractions of OPEs varied significantly between seasons. Tricresyl phosphate (TMPP), tri(2-ethylhexyl) phosphate (TEHP), 2-ethylhexyl diphenyl phosphate (EHDPP), and TPHP were mostly adsorbed onto fine particles, while TNBP, TCEP, TCIPP, and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) distributed in both gas and fine particle phases. The predicted PM₂.₅-bound fractions by Kₒₐ-based model were closer to the measurements for TCIPP, TDCIPP, and TPHP, whereas the predictions by Junge-Pankow model were closer to the measurements for TMPP and tris (2-butoxyethyl) phosphate (TBOEP). However, the predictions of both models cannot accurately match the measured gas-particle partitioning of TNBP and TCEP.
Show more [+] Less [-]Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary Full text
2020
Xie, Minwei | Wang, Wen-Xiong
Metal contamination in the Pearl River Estuary (PRE) is persistent-, yet a comprehensive understanding of distribution and behavior of metals in surface water of this large, multi-source estuary is still lacking. In the present study, water samples from 24 sites spanning the whole estuary during the dry and wet season were collected and fractioned. Trace metal concentrations in samples were then determined following a preconcentration technique using Nobias Chelate-PA1 resin. Distribution of trace metals exhibited variability along and across estuary, as a result of estuarine mixing, external metal loadings, addition and removal. Behavior of metals was contrasting between the dry and wet seasons, exhibiting metal-specific intercorrelations and dynamics. Colloidal metals (Mn, Ni and Cd) were primarily present in upper estuary and areas affected by external contaminant loading. Colloidal Cu was the only metal that was ubiquitous in the estuary in both seasons. It showed a high affinity for small-size organic colloids (likely fulvic acid) during the dry season. Overall, the present study demonstrated the multi-source character of the PRE and that the behavior of trace metals was controlled by the coupling of hydrologic and geochemical processes, with anthropogenic perturbations.
Show more [+] Less [-]Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice Full text
2020
Liu, Jianhui | Li, Xiangyang | Zhou, Guiqing | Sang, Yujian | Zhang, Yue | Zhao, Yanzhi | Ge, Wei | Sun, Zhiwei | Zhou, Xianqing
Silica nanoparticles (SiNPs) can reduce both quality and quantity of sperm via inhibiting the progress of meiosis and mitosis and inducing apoptosis of spermatogenic cells, however, their specific mechanism and effects on the later stage of spermatogenesis are still unclear. To investigate the effects of SiNPs on the reproductive system, male mice were treated with SiNPs (0, 1.25, 5 and 20 mg/kg.bw) via intratracheal instillation once every 3 days and for a total of 15 days. Results revealed that exposure to SiNPs induced reduction in the rate of sperm activity, histological abnormalities in seminiferous epithelium as well as apoptosis of spermatogenic cells, which are associated with decreased level of Lethal (3) malignant brain tumor like 2 (L3MBTL2) and activation of DNA damage-p53-mitochondrial apoptosis pathways. Moreover, reduction in L3MBTL2 level caused by SiNPs also led to the lower expression of RNF8-ubH2A/ubH2B pathway, thus resulting in incomplete histone-to-protamine exchange. These results suggest that the inhibition of L3MBTL2 expression caused by SiNPs not only activates DNA damage-p53-mitochondrial apoptosis pathway leading to the apoptosis of spermatogenic cells, but also inhibits RNF8-ubH2A/ubH2B pathway resulting in incomplete histone-to-protamine exchange, thereby affected spermatogenesis. This indicates that L3MBTL2 plays an important role in reproductive toxicity of males caused by SiNPs.
Show more [+] Less [-]Personal exposure to fine particulate matter and renal function in children: A panel study Full text
2020
Liu, Miao | Guo, Wenting | Cai, Yunyao | Yang, Huihua | Li, Wenze | Yang, Liangle | Lai, Xuefeng | Fang, Qin | Ma, Lin | Zhu, Rui | Zhang, Xiaomin
There is a lack of evidence regarding the association of short-term exposure to fine particulate matter (PM₂.₅) with renal function in children and its underlying mechanism. We included 105 children aged 4–13 years from a panel study conducted in Wuhan, China with up to 3 repeated visits across 3 seasons from October 9, 2017 to June 1, 2018. We measured personal real-time PM₂.₅ exposure concentration continuously for 72 h preceding each round of health examinations that included serum creatinine and cytokines. Linear mixed-effects models were performed to estimate the effects of PM₂.₅ on estimated glomerular filtration rate (eGFR) over various lag times, and a mediation analysis was applied for the role of cytokines in association between PM₂.₅ and eGFR. Results showed that personal exposure to PM₂.₅ was dose-responsive related to decreased eGFR within lag 2 days. The effect was the strongest at lag 0 day with estimation of −1.69% [95% confidence interval (CI): -2.27%, −1.10%] in eGFR by a 10-μg/m³ increase in PM₂.₅, and reached peak at lag 3 h, then declined over time. Such inverse relationships were more evident among children aged 4–6 years, or boys or those who lived proximity to major roadways <300 m. Notably, eGFR still held on to decrease even when PM₂.₅ was below Class II Chinese ambient air quality standard at lag 0 day. Moreover, the effect of PM₂.₅ on eGFR was significantly reduced in children with high and medium levels of serum chemokine ligand 27 (CCL27), but not in those with low CCL27. Furthermore, CCL27 was positively relevant to PM₂.₅, and mediated proportion of CCL27 ranged from 3.75% to 6.61% in relations between PM₂.₅ and decreased eGFR over various lag times. In summary, short-term PM₂.₅ exposure might be dose-responsive associated with reduced eGFR whereby a mechanism partly involving CCL27 among healthy children.
Show more [+] Less [-]Thermal discharge influences the bioaccumulation and bioavailability of metals in oysters: Implications of ocean warming Full text
2020
Lan, Wang-Rong | Huang, Xu-Guang | Lin, Lu-xiu | Li, Shun-Xing | Liu, Feng-Jiao
Human-induced temperature changes influence coastal regions, both via thermal pollution and ocean warming, which exerts profound effects on the chemistry of metals and the physiology of organisms. However, it remains unknown whether the increased temperature of discharged water or ocean warming, as a result of climate change, lead to an increase of human health risks associated with the consumption of sea foods. In this study, the influence of temperature on metal accumulation by oysters was studied in individuals collected from a coastal area affected by the thermal water discharge of the Houshi Power Plant, China. The bioaccumulation factor (BAF) and oral bioavailability (OBA) of metals in oysters was determined. Elevated temperatures led to an increase in BAF for Cu, Zn, Hg, and Cd (p < 0.05), but no change was observed for As and Pb (p > 0.05). The OBA for Cd, As, and Pb correlated positively to elevated temperatures (p < 0.05). However, for Cu and Zn, OBA was negatively correlated with increasing temperature (p < 0.05). As, Pb, and Cd in the trophically available metal (defined as a sum of heat-stable proteins, heat-denaturable proteins, and organelles) was significantly elevated at the highest temperature seawater site (site A) compared to the lowest seawater site (site B). Thus, the irregular variation of OBA for each metal may be the result of variations in the subcellular distribution of metals and the protein quality influenced by the increased temperature. Moreover, the increased temperature and increased the hazard quotient values of As and Cd (p < 0.05 for As, n = 6, p < 0.05 for Cd, n = 6), which provided an indication of the potential risks of the consumption of oysters or other seafood to future warming under climate change scenarios.
Show more [+] Less [-]Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments Full text
2020
Madureira, Joana | Slezakova, Klara | Costa, Carla | Pereira, Maria Carmo | Teixeira, João Paulo
Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM₁₀, PM₂.₅) and number (N₂₀₋₁₀₀₀) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM₁₀, PM₂.₅, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM₂.₅ (mean = 53 μg m⁻³) exceeded limit of 25 μg m⁻³, for PM₁₀ (mean = 57 μg m⁻³) 41% of homes demonstrated average levels higher than 50 μg m⁻³, thus indicating potential risks. Indoor PM₁₀ was mostly (82–99%) composed of PM₂.₅, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 10³ # cm⁻³) were higher than outdoors (mean = 10.0 × 10³ # cm⁻³). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.
Show more [+] Less [-]