Refine search
Results 1271-1280 of 3,207
Vertical Greenery Systems as a Strategy in Urban Heat Island Mitigation Full text
2015
Price, Alexandra | Jones, Erick C. | Jefferson, Felicia
Integrating vegetation into architecture has become widely recognized as a multi-beneficial practice in architecture and engineering design to combat an array of environmental issues. Urban areas have microclimates that are different than the climates of their surrounding rural areas. Patterns in these differences over the years have shown that urban microclimates tend to be significantly warmer in comparison. This phenomenon is now recognized as the urban “heat island” effect. While the associated consequences of this urban heating are far reaching, excess energy expenditure, air pollution emissions, and threats to human health are among the most critical for evaluation. The integration of vegetative green space in urban planning, coupled with highly reflective materials in place of conventional paved surfaces on roads and rooftops have proven to be effective methods of urban heat island mitigation. While as separate entities these methods are effective, innovative technology has brought forth greening roofs which allows vegetation to compensate where other roof-cooling strategies fall short. Substantially, vertical greenery systems compensate where greening roofs fall short. This paper explores both integrated vegetation as an optimal mitigation strategy for urban heat islands and vertical plant walls as an optimal design.
Show more [+] Less [-]EPS and SMP as Stability Indicators During the Biofiltration of Diffuse Methane Emissions Full text
2015
Hernández, J. | Gómez-Cuervo, S. | Omil, F.
Biofiltration of an air stream polluted with diffuse CH₄ concentrations of 0.19 % (v v⁻¹) was carried out. These emissions can be encountered at different industrial facilities such as wastewater treatment plants and landfills. The effect of ammonium supplied in the nutrient solution was studied in a range from 0 to 1 g N-NH₄ ⁺ L⁻¹, taking account its effect on CH₄ removal efficiency (RE), CO₂ production, ammonium conversion and the occurrence of exopolymeric substances. Additional batch assays were performed in order to evaluate the most suitable pH and temperature ranges for the biomass used as inoculum. A conventional biofilter was operated along 225 days achieving maximum CH₄ elimination capacities of up to 11.2 g CH₄ m⁻³ h⁻¹, corresponding to REs of 62 %, using 0.52 g N L⁻¹ of ammonia as nitrogen source in the nutrient solution and operating at an empty bed residence time of 4.4 min. CO₂ production values confirmed that most of this elimination was biological and not absorption into the liquid phase. The occurrence of instability periods resulted in a clear increase of the soluble microbial products (SMPs) contained in the liquid phase, especially in the protein fraction, which could be used as a monitoring tool to follow the stress conditions of the biofilter. Results indicate interesting links between the performance of the biofilter and the presence of extracellular polysaccharide and protein concentration in the liquid phase, with increasing concentrations detected when the process was not stable.
Show more [+] Less [-]Detection and Monitoring of REEs and Related Trace Elements with an Itrax™ Core Scanner in the Ría de Huelva (SW Spain) Full text
2015
Rodríguez-Germade, I. | Rubio, B. | Rey, D. | Borrego, J.
The Ría de Huelva is one of the most polluted areas in Western Europe because of the high acid mining activity together with the chemical industries located in its margins. This strong anthropogenic pressure results in the liberation of high concentrations of metals and rare earth elements (REEs) to the Ría. In this work, an Itrax™ Core Scanner (Itrax) has been used for the first time to detect and to study REEs distribution in a sediment core. Its high sensitivity (until 5 μg·g⁻¹for Er) was confirmed by comparing its semi-quantitative results with concentration values obtained from inductively coupled plasma mass spectrometry (ICP-MS). In this way, establishing equivalences between Itrax continuous data and concentration data have been possible to detect pollution levels caused by REEs and related trace elements along the whole sediment core reducing the discrete analyses and therefore saving time and money. Moreover, Itrax was confirmed as a fast screening and monitoring tool to study REEs fractionation patterns and to identify the environmental changes responsible of these patterns.
Show more [+] Less [-]An Interlaboratory Comparison for Total Mercury and Methylmercury in Water at Environmentally Relevant Concentrations Full text
2015
Creswell, J. E. | Carter, A. | Engel, V. L. | Metz, J. A. | Davies, C. A.
We have conducted an interlaboratory comparison study for total mercury and methylmercury analysis in natural (unspiked) water samples annually for the past 4 years. The samples were primarily freshwater, with the exception of one coastal seawater sample in 2014. The study provided participants with an opportunity to assess the quality of their measurements and the intercomparability of their data with their peers. Data on analytical methods used were collected and used to determine whether any methods yield biased results and should be discontinued. The majority of participants received performance scores of 3 or higher, indicating satisfactory performance and results close to the consensus means. However, the coefficients of variation between labs were greater than 20 % in most cases, which may not be sufficiently precise for multilaboratory environmental research, where the processes being studied may vary by 20 % or less. Total mercury analysis methods that do not use gold amalgamation were shown to be underperforming relative to those that do. No significant correlation was observed between sample storage time or temperature and total mercury recovery. Methylmercury analysis methods that do not use distillation performed poorly relative to those that use distillation.
Show more [+] Less [-]Distribution of Mercury in Shrimp Ponds and Volatilization of Hg by Isolated Resistant Purple Nonsulfur Bacteria Full text
2015
The aims of this study were to investigate the presence of mercury (Hg) contamination in shrimp ponds in the south of Thailand and to isolate Hg-resistant purple nonsulfur bacteria (PNSB). Contamination by total mercury (HgT) in water and sediment samples ranged from <0.0002 to 0.037 μg/L and from 30.73 to 398.84 μg/kg dry weight. In all water and sediment samples, the concentration of HgTwas less than the Thai, Hong Kong, and Canadian standard guidelines. Of the Hg-resistant PNSB, six strains detoxified Hg²⁺by volatilization to Hg⁰using their mercuric reductase enzyme. The ability of PNSB to resist Hg²⁺in aerobic dark conditions was better than in microaerobic light, and this corresponded with their Hg reductase activities (dark condition 15.75, 12.62, and 12.16 U/mg protein for strains SSW15-1, SRW1-5, and SSS2-1, respectively). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were the same under both incubating conditions at 2.40 mg/L for SRW1-5 and 1.60 mg/L for SSW15-1. However, both values under light condition of SSS2-1 were 3.20 mg/L while under dark-condition MIC and MBC values were 3.20 and 4.00 mg/L. The half maximal inhibitory concentration (IC₅₀) values of Hg²⁺on strains SSS2-1, SRW1-5, and SSW15-1 under dark and light conditions were 2.16, 1.23, and 0.90; and 1.66, 1.11, and 0.80 mg/L, respectively. They were identified using 16S ribosomal RNA (rRNA) genes establishing that SSS2-1 and SSW15-1 were Afifella marina, while SRW1-5 was Rhodovulum sulfidophilum. These strains can potentially be used to treat Hg-contaminated shrimp ponds.
Show more [+] Less [-]Accumulation of Platinum Nanoparticles by Sinapis alba and Lepidium sativum Plants Full text
2015
Nanoparticles (NPs) are commonly used, and concerns about their possible adverse effects are being voiced as well. However, little is known about the fates of NPs released to the environment. The aim of the study was to (i) evaluate the ability of Sinapis alba and Lepidium sativum plants to take up platinum nanoparticles (Pt-NPs) and translocate them to aboveground organs, (ii) compare the accumulation efficiency of different forms of platinum and (iii) identify the forms in which platinum is stored in plant tissues. Plants were cultivated on medium supplemented with different concentrations of Pt-NPs and [Pt(NH₃)₄](NO₃)₂. Platinum content in plants was determined using inductively coupled plasma mass spectrometry. For the identification of the presence of Pt-NPs in plant tissues, gamma spectrometry following iron irradiation was applied. It was found that L. sativum and S. alba are tolerant to applied concentrations of Pt-NPs and have an ability to take up platinum from the medium and translocate it to aboveground organs. The highest concentration of platinum was observed in plant roots (reaching 8.7 g kg⁻¹for S. alba). We tentatively conclude that platinum is accumulated as nanoparticles. The obtained results suggest future application of plants for phytoremediation and recovery of noble metal nanoparticles.
Show more [+] Less [-]Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland Full text
2015
Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland Full text
2015
Since the 1990s, the emission of pollutants was reduced in a majority of Polish and developing country factories whereas the level of energy production was similar to that prior to the 1990s. The conifer investigated in this study has grown for many years under the stress of industrial pollution. Despite this, the trees are preserved, to a large extent, sensitive to the natural climatic factors. We present a complex analysis of the climatic (sunshine, temperature, precipitation, humidity, and wind circulation) and anthropogenic factors influencing the radial increment dynamics of Scots pine (Pinus sylvestris L.) growing in the vicinity of the combined heat and power station in Łaziska (Poland). We analyzed the spatiotemporal distribution of growth reductions, the depth of reduction with respect to the distance from the emitter, the relationship between tree growth and climate during the industry development period and during proecological strategy application . Samples of carbon isotopic composition in pine needles from 2012 to 2013 were additionally determined. Pines series of 3 positions indicate that they have a similar sensitivity to most climatic elements of the previous and given year, but there is also a different rhythm between the studied populations of incremental growth of pines. The causes of diversity are due to the different types of habitat (site types) and industrial pollution. The variation in carbon stable isotopic composition in pine needles was connected with an increase of CO₂.
Show more [+] Less [-]Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland Full text
Barbara Sensuła | Sławomir Wilczyński | Magdalena Opała
Since the 1990s, the emission of pollutants was reduced in a majority of Polish and developing country factories whereas the level of energy production was similar to that prior to the 1990s. The conifer investigated in this study has grown for many years under the stress of industrial pollution. Despite this, the trees are preserved, to a large extent, sensitive to the natural climatic factors. We present a complex analysis of the climatic (sunshine, temperature, precipitation, humidity, and wind circulation) and anthropogenic factors influencing the radial increment dynamics of Scots pine (Pinus sylvestris L.) growing in the vicinity of the combined heat and power station in Łaziska (Poland). We analyzed the spatiotemporal distribution of growth reductions, the depth of reduction with respect to the distance from the emitter, the relationship between tree growth and climate during the industry development period and during proecological strategy application . Samples of carbon isotopic composition in pine needles from 2012 to 2013 were additionally determined. Pines series of 3 positions indicate that they have a similar sensitivity to most climatic elements of the previous and given year, but there is also a different rhythm between the studied populations of incremental growth of pines. The causes of diversity are due to the different types of habitat (site types) and industrial pollution. The variation in carbon stable isotopic composition in pine needles was connected with an increase of CO2. | Pine, Climate changes, Pollution, Tree growth, Combined heat and power station, Carbon, isotopes in needles | 25 | 1-17 | 7
Show more [+] Less [-]Nitric Oxide Attenuates Oxidative Stress Induced by Arsenic in Lettuce (Lactuca sativa) Leaves Full text
2015
Silveira, Neidiquele M. | de Oliveira, Juraci A. | Ribeiro, Cleberson | Canatto, Regiane A. | Siman, Luhan | Cambraia, José | Farnese, Fernanda
Lettuce plants were exposed to different toxic levels of arsenic (As) to induce an oxidative stress response, and the role of nitric oxide (NO) (provided as sodium nitroprusside (SNP)) as an attenuating agent of this stress condition was evaluated. Plants were treated with 50 μM of As with or without 100 μM SNP added to the nutrient solution. The hydrogen peroxide, superoxide anion, and malondialdehyde concentrations and enzymatic activities were measured. The increase in As concentration detected in the leaves was followed by a significant increase in H₂O₂ and malondialdehyde (MDA) concentrations. However, the presence of SPN promoted a reduction in the concentration of these oxidative agents and also reduced the translocation of As to the shoots. The enzymatic activities in the plants exposed to As were increased, which indicates the active participation of these enzymes in the reduction of oxidative stress induced by the metalloid. In the plants exposed to As and SNP, the enzymatic activities were not so high; this result was possibly related to the direct action of NO in scavenging the generated toxic metabolites and with the reduction in the translocation of the pollutant to the shoots. Lettuce and leaves of other vegetables are usually ingested, and this study shows an alternative to avoid human contamination with As.
Show more [+] Less [-]Effect of SrCO3 Additive on CuZnAl/HZSM-5 Catalyst Property for the Direct DME Synthesis Full text
2015
Zhang, Xiaoyan | Wang, Minghua | Yang, Amin | Kong, Chuiyu | Zhai, Yuchun
SrCO₃ was formed and added as a carrier into copper-based catalyst (CuZnAl catalyst) prepared by hydrothermal method before the catalyst incorporates with HZSM-5. The CuZnAlSr catalyst was characterized by SEM, BET, XRD, IR, and activity-evaluation system in a fixed-bed tubular reactor equipped with chromatograph (GC). The conversion of CO₂ reaches 30.30 %, and the overall yield of methanol and dimethyl ether is 27.80 %. Catalytic property as to CO₂ conversion has only slight decrease even up to 150 h of reaction time. The addition of SrCO₃ enhanced the activity of the catalyst through providing a tridimensional frame and electron transfer bridge.
Show more [+] Less [-]Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron Full text
2015
Pardo, Fernando | Rosas, Juana M. | Santos, Aurora | Romero, Arturo
The present work studies the remediation of a B20 (20 % biodiesel, 80 % diesel) biodiesel blend-contaminated soil (1,000 mg kg⁻¹) with persulfate activated by iron. Three different sources of iron (Fe(II)), granular zerovalent iron (gZVI), and a slurry of nanoparticles of zerovalent iron (nZVI), without pH adjustment were tested. Besides, the effect of the addition of chelating agents, such as trisodium citrate (SC), or citric acid (CiA), has been also studied. SC promotes pH under near-neutral conditions and reaction takes place at low rate at these experimental conditions. On the other hand, the use of CiA leads to an acidic pH and chelating agent is oxidized at higher rate than total petroleum hydrocarbons (TPH). Therefore, CiA addition does not seem to produce any improvement on the removal efficiency of TPH. Regarding the three different sources of iron used as activators, Fe(II), gZVI and nZVI, in absence of chelating agent, under acidic pH and by adding the same amount of iron, the highest TPH conversion was obtained with ZVI (about 60 %), while a conversion of about 40 % was obtained with the addition of Fe(II). The maximum TPH conversion value was achieved in shorter time using nZVI. Concerning the removal efficiency of each fraction of biodiesel abated, fatty acid methyl esters (FAME) were by far the easiest to oxidize, achieving 100 % of conversion, either by using Fe(II) or nZVI activated persulfate.
Show more [+] Less [-]