Refine search
Results 1271-1280 of 7,280
Accumulation capability for cesium differs among bacterial species: A comprehensive study using bacteria isolated from freshwater and coastal sediment
2022
Li, Jiefeng | Wang, Yajie | Li, Wenjiao | Bhat, Sartaj Ahmad | Wei, Yongfen | Deng, Zhiyi | Hao, Xiaodi | Li, Fusheng
The fate and behavior of radioactive cesium (Cs) in the water environment are of great concern. The involvement of bacteria regarding their accumulation capability for this element is the most fundamental factor that needs to be clarified even for exploring the interactions between many environmental factors that involve together in governing the transport and distribution of Cs. As the first systematical study that aimed to evaluate the accumulation capability of environmental bacteria for Cs, bacteria in the sediment of a freshwater reservoir and coastal water environment were isolated and multiplied for contact experiment with Cs under different temperature conditions (5, 25, and 35 °C). The accumulation concentration of Cs in bacteria from freshwater sediment varied in 3.95 × 10⁻⁶ to 5.68 × 10⁻⁴ng-Cs/cell, and that from coastal sediment in 1.52 × 10⁻⁶ to 7.41 × 10⁻⁴ng-Cs/cell, indicating obvious differences among bacterial species. Bacteria of coastal sediment possessed higher accumulation capability for Cs than bacteria from freshwater sediment, and temperature dependency was confirmed for bacteria from coastal sediment. The findings of this study have great reference value for better understanding and controlling the fate and behavior of radioactive Cs associated with bacteria in the water environment.
Show more [+] Less [-]Midgut and fat body: Multisystemic action of pyriproxyfen on non-target organism Ceraeochrysa claveri (Neuroptera: Chrysopidae)
2022
Scudeler, Elton Luiz | Carvalho, Shelly Favorito de | Garcia, Ana Silvia Gimenes | Santorum, Marilucia | Padovani, Carlos Roberto | Santos, Daniela Carvalho dos
Morphological tools can assist in the evaluation of effects of insecticides on non-target insects. Pyriproxyfen, a juvenile hormone analog, is known to interfere with growth and metamorphosis of insects. However, there are studies showing indirect effects on natural enemies, including green lacewings. Few prior studies describe morphological effects of pyriproxyfen on target insect organs, especially on natural enemies. Through morphological tools, this study aimed to characterize the midgut and fat body, both important organs of digestion and great metabolic activity respectively, of the predator Ceraeochrysa claveri after chronic exposure to pyriproxyfen. Larvae of C. claveri were fed Diatraea saccharalis egg clusters treated with pyriproxyfen in solution of 50 or 100 mg a.i. L⁻¹ throughout the larval stage. The biological data revealed significant increases in development time, especially in the third instar, and in cumulative mortality from the prepupal into the pupal stage. Morphological analysis of adult midgut (≤24 h old) showed damage including formation of epithelial folds, intercellular spaces, emission of cytoplasmic protrusions. Both fat body regions presented decrease of lipid droplets, vacuolization of trophocytes and mitochondrial injury featuring a multisystemic action. In both organs, pyriproxyfen exposure induced significant oxidative stress by mitochondrial superoxide production. Cytoprotective responses were induced in midgut and fat body cells by augmenting the number of cytoplasmic granules containing calcium and expression of HSP 90. Both organs proved to be efficient in presenting histopathological alterations, showing the sensitivity and applicability of this morphological tool for evaluating other insecticides in non-target organisms.
Show more [+] Less [-]Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada
2022
Chételat, John | Cousens, Brian | Hebert, Craig E. | Jung, Thomas S. | Mundy, Lukas | Thomas, Philippe J. | Zhang, Shuangquan
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: ²⁰⁶Pb/²⁰⁷Pb = 1.189 ± 0.007, ²⁰⁸Pb/²⁰⁷Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
Show more [+] Less [-]Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals
2022
Mazarji, Mahmoud | Minkina, Tatiana | Sushkova, Svetlana | Mandzhieva, Saglara | Barakhov, Anatoly | Barbashev, Andrey | Dudnikova, Tamara | Lobzenko, Iliya | Giannakis, Stefanos
The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.
Show more [+] Less [-]Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study
2022
Wu, Jiawen | Wang, Tao | Shi, Nan | Min, Fanfei | Pan, Wei-Ping
3D hierarchical porous biochar (HPBC) was synthesized by a thermally removable template without post-activation. Zn(NO₃)₂ decomposition produced gases and ZnO in situ to activate and expand the three-dimensional micro-and mesopores. Compared with pristine biochar (BC), the specific surface area and pore volume of HPBC were increased by 223 and 75 times, respectively. The abundant pore structure of HPBC significantly enhanced the diffusion rate of heavy metals. For example, compared to BC, the time required for HPBC to adsorb Pb²⁺ reach adsorption equilibrium was reduced by 87.5% (40 min vs 5min). Such an adsorption performance of HPBC was also insensitive to different background ions (K⁺, Na⁺, Ca²⁺, and Mg²⁺) with a much higher concentration than that of heavy metals. When applied to treat desulfurization wastewater from power plants, HPBC yielded 100% removal of Pb²⁺ and Cd²⁺, much higher than that by using commercial activated carbon (28%). Molecular dynamics simulation revealed different locations preferred by the adsorption of Pb²⁺ (micropores) and Cd²⁺ (mesopores) in the hierarchical pore structures. The adsorption of Pb²⁺ and Cd²⁺ on HPBC was mainly achieved by diffusion, oxygen functional group complexation, and precipitation. These results provided better knowledge to understand the microscopic adsorption mechanisms of heavy metals in hierarchical pores and a facile yet robust strategy to design such structures in biochar for efficient wastewater treatment.
Show more [+] Less [-]Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field
2022
Wang, Yuchen | Li, Ang | Ren, Binqiao | Han, Zijian | Lin, Junhao | Zhang, Qiwei | Cao, Tingting | Cui, Chongwei
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb²⁺, Cu²⁺, Zn²⁺). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu²⁺ and Zn²⁺ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb²⁺ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb²⁺ ions could form a more stable coordination sphere in metal complexes than Cu²⁺ and Zn²⁺ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Show more [+] Less [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Show more [+] Less [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Show more [+] Less [-]Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta, South China: Implications for human exposure
2022
Liang, Chan | Mo, Xiao-Jing | Xie, Jiong-Feng | Wei, Gao-Ling | Liu, Liang-Ying
Some organophosphate di-esters (di-OPEs) have been found to be more toxic than their respective tri-esters. The environmental occurrence of di-OPEs remains largely unclear. A total of 106 water samples, including 56 drinking water (bottled, barreled, and tap water) and 50 surface water (lake and river) samples were collected and analyzed for 10 organophosphate tri-esters (tri-OPEs) and 7 di-OPEs. The concentrations (range (median)) of ∑₇di-OPE were 2.8–22 (9.7), 1.1–5.8 (2.6), 3.7–250 (120), 13–410 (220), and 92–930 (210) ng/L in bottled water, barreled water, tap water, lake water, and river water, respectively. In all types of water samples, tris(1-chloro-2-propyl) phosphate was the dominant tri-OPE compound. Diphenyl phosphate was the predominant di-OPE compound in tap water and surface water, while di-n-butyl phosphate and bis(2-ethylhexyl) phosphate was the dominant compound in bottled water and barreled water, respectively. Source analysis suggested diverse sources of di-OPEs, including industrial applications, effluents of municipal wastewater treatment plants, degradation from tri-OPEs during production/usage and under natural environmental conditions. The non-carcinogenic and carcinogenic risks of OPEs were lower than the theoretical threshold of risk, indicating the human health risks to OPEs via drinking water consumption were negligible. More studies are needed to explore environmental behaviors of di-OPEs in the aquatic environment and to investigate ecological risks.
Show more [+] Less [-]Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults
2022
Kou, Jing | Li, Xiang | Zhang, Mingye | Wang, Limei | Hu, Liqin | Liu, Xinyu | Mei, Surong | Xu, Guowang
China has been in a rapid development period in recent decades, the mass production and use of chemical industrial products and pesticides have resulted in a large amount of pollutants in the environment. These pollutants enter the human body through environmental exposure and dietary intake, causing adverse health effects. Although many of them have been banned and restricted in the production and use in China, these pollutants still remain in the human body due to their high persistence and strong bioaccumulation. In this review, we aim to reveal the accumulation levels and profiles, as well as the temporal and spatial distribution of common chemical pollutants including chlorinated paraffins (CPs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, organophosphorus flame retardants (OPFRs), new halogenated flame retardants (NHFRs), polychlorinated biphenyls, phthalic acid esters, perfluorinated compounds, bisphenols, organophosphorus pesticides and pyrethroid insecticides in the blood (including whole blood, serum and plasma) of Chinese adults by extracting 93 related studies published from 1990 to 2021. Results have shown that CPs, OCPs and PAHs were the main pollutants in China, the levels of short-chain chlorinated paraffin, p,p'-DDE and phenanthrene in blood even reached 11,060.58, 740.41 and 498.28 ng/g lipid respectively. Under the strict control of pollutants in China, the levels of most pollutants have been on a downward trend except for perfluoro octanoate and perfluoro nonanoate. Besides, OPFRs, NHFRs and PAHs may have a potential upward trend, requiring further research and observation. As for spatial distribution, East China (Bohai Bay and Yangtze River Delta) and South China (Pearl River Delta) were the major polluted regions due to their fast development of industry and agriculture.
Show more [+] Less [-]