Refine search
Results 1281-1290 of 1,506
Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin
2012
Brix, Rikke | López-Doval, Julio | Ricart, Marta | Guasch, Helena | de Alda, Miren Lopez | Muñoz, Isabel | Orendt, Claus | Romaní i Cornet, Anna M. | Sabater, Sergi | Barceló, Damià
INTRODUCTION: Concentrations of alkylphenolic compounds (APCs) in water and sediments were related to the composition and functional descriptors of the benthic community (biofilm and macroinvertebrates). MATERIALS AND METHODS: Samples were collected in four sampling campaigns at seven sampling points in the lower Llobregat catchment area (NE Spain). Water and sediment samples underwent chemical target analysis for nine APCs, which are known to disrupt the endocrine system. RESULTS AND DISCUSSIONS: APCs were the main stressors on the diatom community but not on the macroinvertebrate community. CONCLUSIONS: Benthic invertebrates were mostly affected by the general physicochemical water characteristics (where conductivity was a surrogate). Nonylphenol only had an influence on the diatom community in water but not in the remaining compartments, probably because of the low concentrations observed in the environment.
Show more [+] Less [-]Genotoxic effect of ciprofloxacin during photolytic decomposition monitored by the in vitro micronucleus test (MNvit) in HepG2 cells
2012
Garcia-Käufer, Manuel | Haddad, Tarek | Bergheim, Marlies | Gminski, Richard | Gupta, Preeti | Mathur, Nupur | Kümmerer, Klaus | Mersch-Sundermann, Volker
PURPOSE: Ciprofloxacin (CIP), a broad-spectrum, second-generation fluoroquinolone, has frequently been found in hospital wastewaters and effluents of sewage treatment plants. CIP is scarcely biodegradable, has toxic effects on microorganisms and is photosensitive. The aim of this study was to assess the genotoxic potential of CIP in human HepG2 liver cells during photolysis. METHODS: Photolysis of CIP was performed in aqueous solution by irradiation with an Hg lamp, and transformation products were monitored by HPLC-MS/MS and by the determination of dissolved organic carbon (DOC). The cytotoxicity and genotoxicity of CIP and of the irradiated samples were determined after 24 h of exposure using the WST-1 assay and the in vitro micronucleus (MN) test in HepG2 cells. RESULTS: The concentration of CIP decreased during photolysis, whereas the content of DOC remained unchanged. CIP and its transformation products were not cytotoxic towards HepG2 cells. A concentration-dependent increase of MN frequencies was observed for the parent compound CIP (lowest observed effect level, 1.2 μmol L−1). Furthermore, CIP and the irradiated samples were found to be genotoxic with a significant increase relative to the parent compound after 32 min (P < 0.05). A significant reduction of genotoxicity was found after 2 h of irradiation (P < 0.05). CONCLUSIONS: Photolytic decomposition of aqueous CIP leads to genotoxic transformation products. This proves that irradiated samples of CIP are able to exert heritable genotoxic effects on human liver cells in vitro. Therefore, photolysis as a technique for wastewater treatment needs to be evaluated in detail in further studies, not only for CIP but in general.
Show more [+] Less [-]Toxicology of isoproturon to the food crop wheat as affected by salicylic acid
2012
PURPOSE: Isoproturon, a herbicide belonging to the phenylurea family, is widely used to kill weeds in soils. Recent study indicated that isoproturon has become a contaminant in ecosystems due to its intensive use, thus bringing environmental risks to crop production safety. Salicylic acid (SA) is one of the components in plant defense signaling pathways and regulates diverse physiological responses to biotic and environmental stresses. The purpose of the study is to help to understand how SA mediates the biological process in wheat under isoproturon stress. METHODS: Wheat seeds (Triticum aestivum, cv. Yangmai 13) were surface-sterilized and placed on moist filter paper for germination. After 24 h, the germinating seeds were placed on a plastic pot (1 L) containing 1,120 g soil mixed with isoproturon at 4 mg kg−1 soil. After 4 days, wheat leaves were sprayed with 5 mg L−1 SA. The SA treatment was undertaken once a day and lasted for 6 days, when the third true leaf was well developed. For control seedlings, only water was sprayed. Seedlings were grown under a light intensity of 300 µmol m−2 s−1 with a light/dark cycle of 12/12 h at 25°C, and watered to keep 70% relative water content in soils. RESULTS AND DISCUSSION: We investigated the role of SA in alleviating isoproturon-induced toxicity in the food crop wheat (T. aestivum). Plants exposed to 4 mg kg−1 isoproturon showed growth stunt and oxidative damage, but concomitant treatment with 5 mg L−1 SA was able to attenuate the toxic effect. Isoproturon in soils was readily accumulated by wheat, but such accumulation can be blocked significantly by SA application. Treatment with SA decreased the abundance of O2 .− and H2O2, as well as activities of antioxidant enzymes, and increased activities of catalase in isoproturon-exposed plants. The enzyme activities were confirmed by the native polyacrylamide gel electrophoresis. Further, an RT-PCR-based assay was performed to show that several transcripts coding antioxidant enzymes were increased with isoproturon but decreased by SA. CONCLUSION: The present results indicate that exogenous SA is able to improve the wheat tolerance to isoproturon toxicity.
Show more [+] Less [-]Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon
2012
Wang, Zhengfang | Nie, Er | Li, Jihua | Yang, Mo | Zhao, Yongjun | Luo, Xingzhang | Zheng, Zheng
PURPOSE: Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Feᴵᴵ and AC/N-Feᴵᴵᴵ), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. METHOD: The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. RESULTS: Maximum removals of phosphate are obtained in the pH range of 3.78–6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Feᴵᴵ and AC/N-Feᴵᴵᴵ is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. CONCLUSIONS: Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Feᴵᴵ has a higher phosphate removal capacity than AC/N-Feᴵᴵᴵ, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol⁻¹ for AC/N-Feᴵᴵ and AC/N-Feᴵᴵᴵ, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.
Show more [+] Less [-]Analysis and fit of surface CO₂ concentrations at a rural site
2012
Pérez, Isidro A. | Sánchez, M Luisa | García, M Ángeles | Pardo, Nuria
PURPOSE: The impact of CO₂ urban plume in a rural area was investigated by concentrations recorded near surface. METHODS: CO₂ dry concentrations at three levels near surface were recorded for about 8 months at a rural site. Daily cycles were obtained and directional analysis was made with percentiles. Several functions were used to fit background and plume concentrations and the goodness of fit was evaluated with different statistics, which were also compared. RESULTS: Daily cycle showed a difference of around 2 ppm during the night between the lowest (1.8 m) and the highest (8.3 m) levels. Weighting functions of the directional analysis revealed the influence of the Valladolid urban plume. Two regions were established, with local factors prevailing below 3 m s⁻¹ and transport dominating above 6 m s⁻¹. The best fit was achieved with a quadratic function for the background and a cubic function for the plume due to the lack of symmetry observed. Gamma and Weibull distributions were also successfully used. Some statistics, such as the root mean square error (RMSE), stood out when evaluating the goodness of fit, whilst others were discarded due to their extremely low values and the lack of sensitivity against the functions used. Finally, a comprehensive metric merging several statistics was also tested with slight differences against RMSE.
Show more [+] Less [-]Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii
2012
Huang, Huagang | Gupta, D. K. | Tian, Shengke | Yang, Xiao-e | Li, Tingxuan
BACKGROUND, AIM AND SCOPE: Lead (Pb) accumulation in soils affects plants primarily through their root systems. The aim of this study was to investigate early symptoms of the loss of membrane integrity and lipid peroxidation in root tissues and physiological adaptation mechanism to Pb in accumulating ecotypes (AE) and non-accumulating ecotypes (NAE) of Sedum alfredii under Pb stress in hydroponics. METHODS AND RESULTS: Histochemical in situ analyses, fluorescence imaging, and normal physiological analysis were used in this study. Pb accumulation in roots of both AE and NAE increased linearly with increasing Pb levels (0–200 μM), and a significant difference between both ecotypes was noted. Both loss of plasma membrane integrity and lipid peroxidation in root tissues became serious with increasing Pb levels, maximum tolerable Pb level was 25 and 100 μM for NAE and AE, respectively. Pb supplied at a toxic level caused a burst of reactive oxygen species (ROS) in root cells in both ecotypes. However, the root cells of AE had inherently higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and lipoxygenase (LOX) in control plants, and the induction response of these antioxidant enzymes occurred at lower Pb level in AE than NAE. AE plants maintained higher ascorbic acid and H2O2 concentrations in root cells than NAE when exposed to different Pb levels, and Pb induced more increase in dehydroascorbate (DHA), catalase (CAT), and ascorbate peroxidase (APX) in AE than NAE roots. DISCUSSION AND CONCLUSION: Results indicate that histochemical in situ analyses of root cell death and lipid peroxidation under Pb short-term stress was sensitive, reliable, and fast. Higher tolerance in roots of accumulating ecotype under Pb stress did depend on effective free oxygen scavenging by making complex function of both constitutively higher activities and sensitive induction of key antioxidant enzymes in root cells of S. alfredii.
Show more [+] Less [-]Pt and Pd in sediments from the Pearl River Estuary, South China: background levels, distribution, and source
2012
Zhong, Li-feng | Yan, Wen | Li, Jie | Tu, Xiang-lin | Liu, Bao-ming | Xia, Zhen
PURPOSE: This study assessed the concentrations of platinum (Pt) and palladium (Pd) in surface sediments and sedimentary cores collected from the Pearl River Estuary with a view of evaluating the distribution, background levels, possible sources, and contamination level of anthropogenic Pt and Pd. MATERIALS AND METHODS: Thirty-six samples of surface sediments and 12 samples from sedimentary cores were collected. Al2O3 was analyzed on fused glass disks by X-ray fluorescence spectrometer. Heavy metal elements were measured by inductively coupled plasma–mass spectrometry. Pt and Pd were separated from the sample matrix by anion exchange chromatography and subsequent solvent extraction after samples had been digested in Carius tubes using aqua regia. The analysis of Pt and Pd was performed by isotopic dilution-inductively coupled plasma-mass spectrometry. RESULTS AND DISCUSSION: Pt and Pd concentrations in surface sediments were 0.28–2.11 and 0.39–38.30 ng/g, respectively, and Pt and Pd concentrations in sedimentary cores were 0.19–1.18 and 0.15–1.76 ng/g, respectively. Background values of Pt and Pd were 0.20–1.17 and 0.10–1.34 ng/g, respectively. The spatial distribution of the enrichment factor differed between Pt and Pd in surface sediments. Down-core variations in Pt, Pd, and other heavy metal elements were similar in all cases and were related to sediment type. CONCLUSIONS: Some of the Pt and Pt in surface samples were derived from anthropogenic emissions. Pt and Pd were delivered to the sediment by fluvial input. In addition to vehicle exhaust catalysts, Pt and Pd were derived from other sources (e.g., industrial process). An important post-burial remobilization process of Pt and Pd is likely to be particle mixing by billows caused by typhoon.
Show more [+] Less [-]Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites—DDA, DDMU, DDMS, and DDCN
2012
Wetterauer, Bernhard | Ricking, Mathias | Otte, Jens C. | Hallare, Arnold V. | Rastall, Andrew | Erdinger, Lothar | Schwarzbauer, Jan | Braunbeck, T. (Thomas) | Hollert, Henner
BACKGROUND, AIM, AND SCOPE: 2,2-bis(chlorophenyl)-1,1,1-trichloroethane (DDT) metabolites, other than those routinely measured [i.e., 2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE) and 2,2-bis(chlorophenyl)-1,1-dichloroethane (DDD)], have recently been detected in elevated concentrations not only in the surface water of Teltow Canal, Berlin, but also in sediment samples from Elbe tributaries (e.g., Mulde and Havel/Spree). This was paralleled by recent reports that multiple other metabolites could emerge from the degradation of parent DDT by naturally occurring organisms or by interaction with some heavy metals. Nevertheless, only very few data on the biological activities of these metabolites are available to date. The objective of this communication is to evaluate, for the first time, the cytotoxicity, dioxin-like activity, and estrogenicity of the least-studied DDT metabolites. METHODS: Four DDT metabolites, p,p′-2,2-bis(chlorophenyl)-1-chloroethylene (DDMU), p,p′-2,2-bis(chlorophenyl)-1-chloroethane (DDMS), p,p′-2,2-bis(4-ch1oropheny1)acetonitrile (DDCN), and p,p′-2,2-bis(chlorophenyl)acetic acid (DDA), were selected based on their presence in environmental samples in Germany such as in sediments from the Mulde River and Teltow Canal. O,p′-DDT was used as reference in all assays. Cytotoxicity was measured by neutral red retention with the permanent cell line RTG-2 of rainbow trout (Oncorhynchus mykiss). Dioxin-like activity was determined using the 7-ethoxyresorufin-O-deetylase assay. The estrogenic potential was tested in a dot blot/RNAse protection-assay with primary hepatocytes from male rainbow trout (O. mykiss) and in a yeast estrogen screen (YES) assay. RESULTS: All DDT metabolites tested revealed a clear dose–response relationship for cytotoxicity in RTG-2 cells, but no dioxin-like activities with RTL-W1 cells. The dot blot/RNAse protection-assay demonstrated that the highest non-toxic concentrations of these DDT metabolites (50 μM) had vitellogenin-induction potentials comparable to the positive control (1 nM 17β-estradiol). The estrogenic activities could be ranked as o,p′-DDT > p,p′-DDMS > p,p′-DDMU > p,p′-DDCN. In contrast, p,p′-DDA showed a moderate anti-estrogenic effect. In the YES assay, besides the reference o,p′-DDT, p,p′-DDMS and p,p′-DDMU displayed dose-dependent estrogenic potentials, whereas p,p′-DDCN and p,p′-DDA did not show any estrogenic potential. DISCUSSION: The reference toxicant o,p′-DDT displayed a similar spectrum of estrogenic activities similar to 17β-estradiol, however, with a lower potency. Both p,p′-DDMS and p,p′-DDMU were also shown to have dose-dependent estrogenic potentials, which were much lower than the reference o,p′-DDT, in both the vitellogenin and YES bioassays. Interestingly, p,p′-DDA did not show estrogenic activity but rather displayed a tendency towards anti-estrogenic activity by inhibiting the estrogenic effect of 17β-estradiol. The results also showed that the p,p′-metabolites DDMU, DDMS, DDCN, and DDA do not show any dioxin-like activities in RTL-W1 cells, thus resembling the major DDT metabolites DDD and DDE. CONCLUSIONS: All the DDT metabolites tested did not exhibit dioxin-like activities in RTL-W1 cells, but show cytotoxic and estrogenic activities. Based on the results of the in vitro assays used in our study and on the reported concentrations of DDT metabolites in contaminated sediments, such substances could, in the future, pose interference with the normal reproductive and endocrine functions in various organisms exposed to these chemicals. Consequently, there is an urgent need to examine more comprehensively the risk of environmental concentrations of the investigated DDT metabolites using in vivo studies. However, this should be paralleled also by periodic evaluation and monitoring of the current levels of the DDT metabolites in environmental matrices. RECOMMENDATIONS AND PERSPECTIVES: Our results clearly point out the need to integrate the potential ecotoxicological risks associated with the “neglected” p,p′-DDT metabolites. For instance, these DDT metabolites should be integrated into sediment risk assessment initiatives in contaminated areas. One major challenge would be the identification of baseline data for such risk assessment. Further studies are also warranted to determine possible additive, synergistic, or antagonistic effects that may interfere with the fundamental cytotoxicity and endocrine activities of these metabolites. For a more conclusive assessment of the spectrum of DDT metabolites, additional bioassays are needed to identify potential anti-estrogenic, androgenic, and/or anti-androgenic effects.
Show more [+] Less [-]Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development
2012
Govindaraju, M. | Ganeshkumar, R. S. | Muthukumaran, V. R. | Visvanathan, P.
INTRODUCTION: Thermal power plants emit various gaseous and particulate pollutants into the atmosphere. It is well known that trees help to reduce air pollution. Development of a greenbelt with suitable plant species around the source of emission will mitigate the air pollution. Selection of suitable plant species for a greenbelt is very important. MATERIALS AND METHODS: Present study evaluates different plant species around Neyveli thermal power plant by calculating the Air Pollution Tolerance Index (APTI) which is based on their significant biochemical parameters. Also Anticipated Performance Index (API) was calculated for these plant species by combining APTI values with other socio-economic and biological parameters. DISCUSSION: Based on these indices, the most appropriate plant species were identified for the development of a greenbelt around the thermal power plant to mitigate air pollution. Among the 30 different plant species evaluated, Mangifere indica L. was identified as keystone species which is coming under the excellent category. CONCLUSION: Ambient air quality parameters were correlated with the biochemical characteristics of plant leaves and significant changes were observed in the plants biochemical characteristics due to the air pollution stress.
Show more [+] Less [-]Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique
2012
Alqudami, Abdullah | Alhemiary, Nabil A. | Munassar, Saqr
PURPOSE: This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time. METHODS: Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions. RESULTS: The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q ₑ) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q ₑ equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q ₑ of 794 mg/g. The calculated q ₑs are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium. CONCLUSION: Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.
Show more [+] Less [-]