Refine search
Results 131-140 of 626
Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates Full text
2024
Bertrand, Colette | Aviron, Stéphanie | Pelosi, Céline | Faburé, Juliette | Le Perchec, Sophie | Mamy, Laure | Rault, Magali | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction pour la Science Ouverte (DipSO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS)
International audience | Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and “cocktail” effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Show more [+] Less [-]Occurrence, dispersal, and associated environmental risk assessment of pesticides and their transformation products in small water bodies of Northeastern France Full text
2024
Conseil, Gaspard | Milla, Sylvain | Cardoso, Olivier | Pasquini, Laure | Rosin, Christophe | Banas, Damien | Zone Atelier du Bassin de la Moselle (LTSER-ZAM) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-LTSER Réseau des Zones Ateliers (RZA) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Animal et agroécosystèmes (L2A) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Office français de la biodiversité (OFB) | Laboratoire d'hydrologie de Nancy (LHN) ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) | CABARETOX (OFB)
International audience | <div><p>The widespread use of pesticides, specifically plant protection products (PPPs), has led to their transformation products (TPs) being increasingly detected in various environmental compartments, notably surface waters. This study integrates field-detected TPs into an environmental risk assessment of lentic small water bodies (LSWBs). For this purpose, measured environmental concentrations (MECs) of PPPs and TPs in 12 LSWBs, influenced by tributaries under varying agricultural pressures, were collected. Ecotoxicological data from multiple sources were compiled to calculate risk quotients (RQs) and identify potentially harmful PPPs and TPs. Among 86 molecules investigated, 17 PPPs and 30 TPs were detected, representing nearly half of those initially targeted. Ponds exhibited diverse PPP and TP compositions and levels with 12 substances posing high pesticide risk, primarily atrazine-2-hydroxy, MCPA, and metolachlor. Various pond conditions indicated moderate to high risk to aquatic organisms at corresponding MECs. Despite diverse agricultural pressures, only one site was deemed low-risk, highlighting widespread contamination risk due to co-occurring molecules. Given the prevalence of TPs in water bodies, urgent efforts are needed to gather ecotoxicological data on these contaminants to enhance environmental risk assessments. This study provides novel insights into pesticide risks in a less-studied yet common European landscape, focusing on TPs.</p></div>
Show more [+] Less [-]Chemical and genotoxic characterization of bioaccessible fractions as a comprehensive in vitro tool in assessing the health risk due to dust-bound contaminant ingestion Full text
2024
Castel, Rebecca | Tassistro, Virginie | Lebarillier, Stépahnie | Dupuy, Nathalie | Noack, Yves | Orsière, Thierry | Malleret, Laure | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Chimie et Environnement (LCE) ; Université Jean Monnet - Saint-Étienne (UJM) | Laboratoire Chimie de l'environnement (LCE) ; Aix Marseille Université (AMU)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | A*MIDEX | ANR-11-LABX-0010,DRIIHM / IRDHEI,Dispositif de recherche interdisciplinaire sur les Interactions Hommes-Milieux(2011)
International audience | In the last two decades, awareness grew on the matter of the impact of environment on human health. Contaminants sorbed onto soil and settled dust can be ingested and thus represent a hazard, particularly to young children, who play on the ground and bring their hands and objects to their mouth. Metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) are of concern as they are both carcinogenic to humans and ubiquitous in outdoor environments. The present study aims to assess the total and bioaccessible fractions of PAHs and metal(loid)s present in settled dust of four preschools located in industrial, urban, and suburban areas. On the one hand, children’s incremental life cancer risks (ILCR) were calculated according to ingestion pathway. On the other hand, the genotoxicities of the bioaccessible dust-bonded contaminants were determined on gastric cells. PAH concentrations ranged from 50.9 to 2267.3 ng/g, and the bioaccessible fraction represented 10.7% of the total in average. Metal(loid) concentration ranged from 12,430 to 38,941 µg/g, and the mean bioaccessibility was of 40.1%. Cancer risk ranged from 2.8.105 to 8.6.105, indicating that there is a potential cancer risk for children linked to the ingestion of settled dust. The inorganic bioaccessible fraction induced little DNA (< 20%TailDNA) and chromosomal damages (30% increase in micronuclei), whereas the organic bioaccessible fraction induced higher DNA (17–63%TailDNA) and chromosomal damages (88% increase in micronuclei). Such experimental approach needs to be deepen, as a tool complementary to cancer risk calculation, since the latter only lays on a set of targeted contaminants with known toxicity values.
Show more [+] Less [-]Determination of the maximum bioaccumulation capacity of various metals in leaves of two Tillandsia species Full text
2024
Gonzalez, Alexandre | Benfodda, Zohra | Bénimélis, David | Bourgeois, Damien | Herfurth, Damien | Fontaine, Jean-Xavier | Molinié, Roland | Meffre, Patrick | Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) - Université de Nîmes (CHROME) ; Nîmes Université (UNIMES) | Systèmes HYbrides pour la Séparation (LHyS) ; Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences et technologies pour une Economie Circulaire des énergies bas carbone (ISEC) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM) ; Université de Montpellier (UM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences et technologies pour une Economie Circulaire des énergies bas carbone (ISEC) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM) ; Université de Montpellier (UM) | BioEcoAgro BIOPI-UPJV ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - Equipe 5 - Specialized Metabolites of Plant Origin ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Nîmes Université (UNIMES)
International audience | Tillandsia species are plants from the Bromeliaceae family which display biomonitoring capacities in both active and passive modes. The bioaccumulation potential of Tillandsia aeranthos (Loisiel.) Desf. and Tillandsia bergeri Mez acclimated to Southern/Mediterranean Europe has never been studied. More generally, few studies have detailed the maximum accumulation potential of Tillandsia leaves through controlled experiments. The aim of this study is to evaluate the maximum accumulation values of seven metals (Co, Cu, Mn, Ni, Pb, Pt, and Zn) in T. aeranthos and T. bergeri leaves. Plants were immersed in different mono elemental metallic solutions of Co (II), Cu (II), Mn (II), Ni (II), Pb (II), Pt (IV), and Zn (II) ions at different concentrations. In addition, cocktail solutions of these seven metals at different concentrations were prepared to study the main differences and the potential selectivity between metals. After exposure, the content of these metals in the leaves were measured by inductively coupled plasma-optical emission spectrometry. Data sets were evaluated by a fitted regression hyperbola model and principal component analysis, maximum metal loading capacity, and thermodynamic affinity constant were determined. The results showed important differences between the two species, with T. bergeri demonstrating higher capacity and affinity for metals than T. aeranthos. Furthermore, between the seven metals, Pb and Ni showed higher enrichment factors (EF). T. bergeri might be a better bioaccumulator than T. aeranthos with marked selectivity for Pb and Ni, metals of concern in air quality biomonitoring.
Show more [+] Less [-]Aqueous phase recycling: impact on microalgal lipid accumulation and biomass quality Full text
2024
Ramírez-Romero, Adriana | da Costa Magalhaes, Bruno | Matricon, Lucie | Sassi, Jean-Francois | Steyer, Jean-Philippe | Delrue, Florian | CEA Tech en région Sud (DSUD) ; CEA Tech en régions (CEA-TECH-Reg) ; Direction de Recherche Technologique (CEA) (DRT (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | IRCELYON-Catalyse Hétérogène pour la Transition Energétique (IRCELYON-CATREN) ; Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN) ; Institut National de L'Energie Solaire (INES) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Technologique (CEA) (DRT (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN / CEA-DES) ; CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS) | CEA Cadarache ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | ANR-18-CE43-0009,RAFBIOALG,Raffinage catalytique des bio-huiles obtenues par liquéfaction hydrothermale de micro-algues(2018)
fff | International audience | The potential success of microalgal biofuels greatly depends on the sustainability of the chosen pathway to produce them. Hydrothermal liquefaction (HTL) is a promising route to convert wet algal biomass into biocrude. Recycling the resulting HTL aqueous phase (AP) aims not only to recover nutrients from this effluent but also to use it as a substrate to close the photosynthetic loop and produce algal biomass again and process this biomass again into new biocrude. With that purpose, the response to AP recycling of five Chlorellaceae strains was monitored over five cultivation cycles. After four successive cycles of dynamic growth under nutrient-replete conditions, the microalgae were cultivated for a prolonged fifth cycle of 18 days in order to assess the impact of the AP on lipid and biomass accumulation under nutrient-limited conditions. Using AP as a substrate reduced the demand for external sources of N, S, and P while producing a significant amount of biomass (2.95-4.27 g/L) among the strains, with a lipid content ranging from 16 to 36%. However, the presence of the AP resulted in biomass with suboptimal properties, as it slowed down the accumulation of lipids and thus reduced the overall energy content of the biomass in all strains. Although Chlorella vulgaris NIES 227 did not have the best growth on AP, it did maintain the best lipid productivity of all the tested strains. Understanding the impact of AP on microalgal cultivation is essential for further optimizing biofuel production via the HTL process.
Show more [+] Less [-]Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: a One Health concern Full text
2024
Bourdonnais, Erwan | Le Bris, Cédric | Brauge, Thomas | Midelet, Graziella | Bactériologie et Parasitologie des Produits de la Pêche et de l’Aquaculture (B3PA) ; Laboratoire de sécurité des aliments, sites de Maisons-Alfort et de Boulogne-sur-Mer (LSAl) ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - Equipe 8 - Food and Digestive Microbial Ecosystems: Interactions - Dynamics - Application(s) ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Université du Littoral Côte d'Opale (ULCO) | This study was supported by a doctoral fellowship from Région Hauts-de-France and Pôle Métropolitain de la Côte d’Opale (PMCO).
International audience | Antimicrobial resistance (AMR) is a burgeoning environmental concern demanding a comprehensive One Health investigation to thwart its transmission to animals and humans, ensuring food safety. Seafood, housing bacterial AMR, poses a direct threat to consumer health, amplifying the risk of hospitalization, invasive infections, and death due to compromised antimicrobial treatments. The associated antimicrobial resistance genes (ARGs) in diverse marine species can amass and transmit through various pathways, including surface contact, respiration, and feeding within food webs. Our research, focused on the English Channel and North Sea, pivotal economic areas, specifically explores the occurrence of four proposed AMR indicator genes (tet(A), blaTEM, sul1, and intI1) in a benthic food web. Analyzing 350 flatfish samples' skin, gills, and gut, our quantitative PCR (qPCR) results disclosed an overall prevalence of 71.4% for AMR indicator genes. Notably, sul1 and intI1 genes exhibited higher detection in fish skin, reaching a prevalence of 47.5%, compared to gills and gut samples. Proximity to major European ports (Le Havre, Dunkirk, Rotterdam) correlated with increased AMR gene frequencies in fish, suggesting these ports' potential role in AMR spread in marine environments. We observed a broad dispersion of indicator genes in the English Channel and the North Sea, influenced by sea currents, maritime traffic, and flatfish movements. In conclusion, sul1 and intI1 genes emerge as robust indicators of AMR contamination in the marine environment, evident in seawater and species representing a benthic food web. Further studies are imperative to delineate marine species' role in accumulating and transmitting AMR to humans via seafood consumption. This research sheds light on the urgent need for a concerted effort in comprehending and mitigating AMR risks in marine ecosystems within the context of One Health.
Show more [+] Less [-]Designing a new MFC biosensor for clogging detection in treatment wetland Full text
2024
Sorgato Ana, Carla | Nivala, Jaime | Papillon, Justine | Ter-Ovanessian, Benoît | Damasceno Silveira, Daniele | Kim, Boram | Rubens Lapolli, Flavio | Forquet, Nicolas | Réduire, valoriser, réutiliser les ressources des eaux résiduaires (UR REVERSAAL) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Universidade Federal de Santa Catarina = Federal University of Santa Catarina [Florianópolis] (UFSC) | Matériaux, ingénierie et science [Villeurbanne] (MATEIS) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) | Déchets Eaux Environnement Pollutions (DEEP) ; Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
Show more [+] Less [-]Delayed environmental pollution caused by transient landscape storage — An example from the Lesser Antilles Full text
2024
Bizeul, Rémi | Lajoie, Oriane | Cerdan, Olivier | Pak, Lai, Ting | Foucher, Anthony | Huon, Sylvain | Grangeon, Thomas | Evrard, Olivier | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE) ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | Géochimie Des Impacts (GEDI) ; Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE) ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) | Bureau de Recherches Géologiques et Minières (BRGM) | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Mitate Lab (MITATE Lab) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Plan Chlordecone 2021–2027 (Projet SEA9- Chlordecone, Prefecture de Martinique, France)
International audience | The strong pest pressure on intensive banana cultivation in the French West Indies led to the intensive use of chlordecone (an organochlorine insecticide) between 1972 and 1993. Due to its high toxicity for the population and the environment, many studies were conducted on the transfer of chlordecone over the last 20 years. However, most studies focused on the dissolved fraction of chlordecone, while the particle-bound fraction was understudied. Therefore, this study reconstructs pluri-decadal erosion rates ( 1980–2023) and associated chlordecone particle-bound transfers from soil and sediment cores sampled in a cultivated headwater catchment (Saint-Esprit, Martinique). Based on sediment accumulation analyses in an agricultural reservoir, high erosion rates ( 10 t ha−1 yr−1) were found in the investigated catchment during the study period, with values exceeding the estimated tolerable soil loss rate in tropical contexts ( 2.2 t ha−1 yr−1). Based on the analysis of soil cores sampled along a banana plantation hillslope, this study highlights the formation of colluvial deposits with high levels of chlordecone contamination. When these areas are affected by erosion processes, this leads to massive remobilization of particle-bound chlordecone to water bodies. Indeed, in sediment sampled in the downstream reservoir, we observed a drastic increase in these transfers since 2006, synchronous with changes in agricultural practices. This study therefore highlighted the occurrence of legacy contamination at toeslope positions, which was estimated to potentially persist for 4000 to 11,000 years. Such a residence time highlights the need to implement changes in land management to effectively reduce erosion of agricultural soils, particularly in areas identified as ”temporary deposition zones” for chlordecone contamination, in order to protect downstream water bodies from chlordecone transfer. To achieve this, agricultural practices that may increase soil erosion, such as herbicide application or intensive ploughing, should be minimized. Overall, this study improved our understanding of erosion and associated chlordecone transfers in tropical environments.
Show more [+] Less [-]Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Véronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe | Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) ; Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS) | Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | Processus Infectieux en Milieu Insulaire Tropical (PIMIT) ; Université de La Réunion (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IRD-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Institut méditerranéen d'océanologie (MIO) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) | The Ocean Cleanup | Interactions moléculaires et réactivité chimique et photochimique (IMRCP) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Cyclotron Réunion Océan Indien (CYROI) ; Université de La Réunion (UR)-Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | This study was supported by funds from the Structure Federative de Recherche Biosecurite en milieu Tropical (BIOST), Universite de la Reunion (France) and Institut de Recherche pour le Developpement (IRD). Project ID: BMRPLAST.
Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Véronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe | Ecologie marine tropicale dans les Océans Pacifique et Indien (ENTROPIE [Réunion]) ; Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS) | Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | Processus Infectieux en Milieu Insulaire Tropical (PIMIT) ; Université de La Réunion (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IRD-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Institut méditerranéen d'océanologie (MIO) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) | The Ocean Cleanup | Interactions moléculaires et réactivité chimique et photochimique (IMRCP) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Cyclotron Réunion Océan Indien (CYROI) ; Université de La Réunion (UR)-Centre Hospitalier Universitaire de La Réunion (CHU La Réunion) | MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | This study was supported by funds from the Structure Federative de Recherche Biosecurite en milieu Tropical (BIOST), Universite de la Reunion (France) and Institut de Recherche pour le Developpement (IRD). Project ID: BMRPLAST.
NGS raw data 16SrDNA sequences are deposited in zenodo data bank: https://doi.org/10.5281/zenodo.8063253. | International audience | Highlights: • Severe marine plastic pollution impacts Southwest Indian Ocean insular ecosystems. • Plastic debris from Southwest Indian Ocean host rich microbiomes. • Proteobacteria dominate such marine plastic microbiomes. • These debris carry a consequent culturable bacterial flora including potential pathogens. • AMR bacteria hitchhike on these plastics.Abstract: The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km 2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 10 7 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Show more [+] Less [-]Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island Full text
2024
Sababadichetty, Loik | Miltgen, Guillaume | Vincent, Bryan | Guilhaumon, François | Lenoble, Veronique | Thibault, Margot | Bureau, Sophie | Tortosa, Pablo | Bouvier, Thierry | Jourand, Philippe
The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Show more [+] Less [-]Microplastic inputs to the Mediterranean Sea during wet and dry seasons: The case of two Lebanese coastal outlets Full text
2024
Sawan, Rosa | Doyen, Périne | Viudes, Florence | Amara, Rachid | Mahfouz, Céline | Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Ile-de-France]) | National Center for Marine Sciences [Lebanon] ; National Council for Scientific Research = Conseil national de la recherche scientifique du Liban [Lebanon] (CNRS-L) | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - Equipe 8 - Food and Digestive Microbial Ecosystems: Interactions - Dynamics - Application(s) ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège)-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Université du Littoral Côte d'Opale (ULCO) | ANR-21-EXES-0011,IFSEA,Transdisciplinary graduate school for marIne, Fisheries and SEAfood sciences(2021)
International audience | This paper presents a new Remote Hyperspectral Imaging System (RHIS) embedded on an Unmanned Aquatic Drone (UAD) for plastic detection and identification in coastal and freshwater environments. This original system, namely the Remotely Operated Vehicle of the University of Littoral Côte d’Opale (ROV-ULCO), works in a near-field of view, where the distance between the hyperspectral camera and the water surface is about 45 cm. In this paper, the new ROV-ULCO system with all its components is firstly presented. Then, a hyperspectral image database of plastic litter acquired with this system is described. This database contains hyperspectral data cubes of different plastic types and polymers corresponding to the most-common plastic litter items found in aquatic environments. An in situ spectral analysis was conducted from this benchmark database to characterize the hyperspectral reflectance of these items in order to identify the absorption feature wavelengths for each type of plastic. Finally, the ability of our original system RHIS to automatically recognize different types of plastic litter was assessed by applying different supervised machine learning methods on a set of representative image patches of marine litter. The obtained results highlighted the plastic litter classification capability with an overall accuracy close to 90%. This paper showed that the newly presented RHIS coupled with the UAD is a promising approach to identify plastic waste in aquatic environments.
Show more [+] Less [-]