Refine search
Results 1301-1310 of 6,473
Patterns of mercury exposure and relationships with isotopes and markers of oxidative status in chicks of a Mediterranean seabird
2020
Costantini, David | Bustamante, Paco | Brault-Favrou, Maud | Dell’Omo, Giacomo
The Mediterranean basin is a hotspot of mercury (Hg) contamination owing to intense anthropogenic emissions, volcanic activity and oligotrophic conditions. Little work has been done to assess the sources of Hg exposure for seabirds and, particularly, the physiological consequences of Hg bioaccumulation. In this study, we (i) describe the individual and temporal variation in blood concentration of total Hg (THg) over three breeding seasons, (ii) identify the factors that affect the THg exposure and (iii) determine the individual- and population-level connections between THg and blood-based markers of oxidative status in chicks of Scopoli’s shearwaters (Calonectris diomedea) breeding on the island of Linosa in the southern Mediterranean. We carried out the work on chicks near fledging because they are fed with prey captured near the colony, thus their Hg levels reflect local contamination. The concentration of THg in erythrocytes varied from 0.23 to 4.29 μg g⁻¹ dw. Chicks that were fed upon higher trophic level prey (i.e., higher δ¹⁵N values) had higher THg levels. Individual variation in THg concentrations was not explained by parental identity, sex nor δ¹³C values. There was significant variation in THg among chicks born from the same mother in different years. We found significant correlations between THg and markers of oxidative status; however, these correlations were no longer significant when we took into account the annual variation in mean values of all metrics. Males with higher values of body condition index had higher blood THg, while THg and body condition index were not correlated in females. Our data indicate that THg levels were moderate to high if compared to other seabirds. However, there is little evidence for harmful short-term detrimental effects owing to THg exposure.
Show more [+] Less [-]The promotion effects of silicate mineral maifanite on the growth of submerged macrophytes Hydrilla verticillata
2020
Liu, Yunli | Han, Fan | Bai, Guoliang | Kong, Lingwei | Liu, Zisen | Wang, Chuan | Liu, Biyun | He, Feng | Wu, Zhenbin | Zhang, Yi
The effects of maifanite on the physiological and phytochemical process of submerged macrophytes Hydrilla verticillate (H.verticillata) were investigated for the first time in the study. The growth index: plant biomass, root length, plant height and leaf spacing, and physiological and phytochemical indexes: chlorophyll, soluble protein, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) content and vitality of the roots of H.verticillata were tested. The results found that maifanite can significantly promote the growth of H.verticillata. The modified maifanite were more conducive to plant growth compared with the raw maifanite, and the MM1 group had the best growth promoting effect. The physiological and phytochemical indexes showed that maifanite can delay the aging process of H.verticillata (P < 0.05). The possible reasons for promoting H.verticillata growth were that maifanite can provide excellent propagation conditions for plant rhizosphere microorganisms, contains abundant major and microelements, and improve the sediment microenvironment. This study may provide a technique for the further application of maifanite in the field of ecological restoration.
Show more [+] Less [-]234U, 238U, 226Ra, 228Ra and 40K concentrations in feed coal and its combustion products during technological processes in the Upper Silesian Industrial Region, Poland
2020
Walencik-Łata, A. | Smołka-Danielowska, D.
Hard coal is the predominant energy source in Poland. The unavoidable consequence of coal combustion is the production of huge amounts of ash which can be concentrated in radionuclides. The ashes from coal combustion are utilized or stored and may affect the quality of the environment. Therefore, the estimation of radionuclides in hard coal and by-products is of crucial importance. The analyzed samples included ashes produced in ash furnaces, power plants and individual home furnaces operating in the Upper Silesian Industrial Region, Southern Poland, during the hard coal burning. This paper presents radioactivity concentrations of ²²⁸Ra, ²²⁶Ra and ⁴⁰K in hard coal, bottom and fly ash samples from Polish coal-fired power plants obtained during various technological coal combustion processes and generated in individual domestic furnaces, determined using the HPGe gamma spectrometry technique. The measurements of ²³⁴,²³⁸U concentrations were performed after sample preparation using alpha-particle spectrometer. The concentrations of the obtained radionuclides differ greatly in the fly and bottom ash samples. The lowest concentrations of ²²⁶Ra, ²²⁸Ra, ²³⁴U, ²³⁸U were observed in bottom ashes from the co-firing of hard coal and biomass in a fluidized-bed furnace, whereas the highest concentrations of ²²⁶Ra (163 ± 6 Bq/kg), ²²⁸Ra (100 ± 2 Bq/kg) isotopes were found in the ashes from individual household furnaces. This means that both the feed coal type and combustion techniques have a direct impact on the concentration of radionuclides in ash. Hard coal silt samples may be enriched in radionuclides and the radioactive equilibrium between ²²⁶Ra and ²³⁸U even in the case of coal is not always achieved. The concentrations of the analyzed isotopes in ashes are 5-7-fold higher than in feed coal. Given that combustion by-products are utilized as construction products, it should be noted that for some ash samples, the radiological hazard indices approach or exceed the maximum permitted levels.
Show more [+] Less [-]Dietary exposure assessment to perchlorate in the Taiwanese population: A risk assessment based on the probabilistic approach
2020
Zhang, Weixiang | Chen, Hsiu-Ling | Lee, Ching-Chang
Perchlorate is an endocrine-disrupting chemical (EDC) that contaminate various foodstuffs. Exposure to perchlorate may cause severe health problems, mainly thyroid dysfunction. However, information on perchlorate contamination of consumer foods in Taiwan is limited. This study investigated perchlorate levels in 310 food samples belonging to 12 food groups collected from Taiwanese markets. A probabilistic risk assessment was conducted to assess the related exposure to Taiwanese people. Perchlorate was detected in 65% of the samples and high levels were identified in certain plant-origin, fruit, and processed food samples. A probabilistic approach was used to estimate daily dietary dose (Monte Carlo–estimated 95th percentile dietary exposure [MCS 95]) by using the Taiwan National Food Consumption database for 14 sex/age groups. The highest and lowest average daily doses (ADDs) were in the age groups of >65 years (MCS 95 = 3.60/3.90 [male/female] μg/kg bw/day) and 16–18 years (MCS 95 = 1.70/1.47 [M/F] μg/kg bw/day), respectively. The 95th percentile of the hazard index of exposure to perchlorate of all sex/age groups far exceeded the tolerable daily intake (0.3 μg/kg bw/day) and reference dose (0.7 μg/kg bw/day) set by the European Food Safety Authority and US EPA, respectively, but it was lower than the provisional maximum tolerable daily intake (10 μg/kg bw/day) suggested by the Joint FAO/WHO Expert Committee on Food Additives. The intake quantity and concentrations of perchlorate from vegetables, fruits, and whole grains are the critical contributors for the ADDs and integrated risk of dietary exposure to perchlorate. Long-term exposure through diets should be considered, instead of focusing on individual EDC during dietary risk assessment in specific populations. Furthermore, cumulative risks for exposure to multiple contaminants, particularly those causing thyroid adverse effects, may be higher than that from perchlorate exposure alone.
Show more [+] Less [-]Personal exposure to polycyclic aromatic hydrocarbons in Appalachian mining communities
2020
Hendryx, Michael | Wang, Shaorui | Romanak, Kevin A. | Salamova, Amina | Venier, Marta
Coal mining activities may increase residential exposure to polycyclic aromatic hydrocarbons (PAHs), but personal PAH exposures have not been studied in mining areas. We used silicone wristbands as passive personal samplers to estimate PAH exposures in coal mining communities in Central Appalachia in the United States. Adults (N = 101) wore wristbands for one week; 51 resided in communities within approximately three miles of surface mining sites, and 50 resided 10 or more miles from mining sites. Passive indoor polyurethane foam (PUF) sampling was conducted in residents’ homes, and a sample of 16 outdoor PUF samples were also collected. Nine PAH congeners were commonly detected in wristbands (mean ± standard deviation), including phenanthrene (50.2 ± 68.7 ng/g), benz[a]anthracene (20.2 ± 58.2 ng/g), fluoranthene (19.4 ± 24.1 ng/g) and pyrene (15.2 ± 18.2 ng/g). Controlling for participant characteristics and season, participants living closer to mining sites had significantly higher levels of phenanthrene, fluorene, fluoranthene, pyrene and ∑PAHs in wristbands compared to participants living farther from mining. Indoor air showed no significant group differences except for pyrene, but outdoor air showed significant or marginally significant differences for phenanthrene, fluorene, pyrene and ∑PAHs. The results suggest that mining community residents face exposure to outdoor mining-related pollutants, and demonstrate that personal silicone wristbands can be deployed as effective passive sampling devices.
Show more [+] Less [-]The toxicity of silver nanomaterials (NM 300K) is reduced when combined with N-Acetylcysteine: Hazard assessment on Enchytraeus crypticus
2020
Mendonça, Monique C.P. | Rodrigues, Natália P. | Scott-Fordsmand, Janeck J. | Jesus, Marcelo Bispo de | Amorim, Mónica J.B.
The widespread production and use of silver nanomaterials (AgNMs) in consumer and medical products have been raising environmental concerns. Once in the environment, the soil is one of the major sinks of AgNMs due to e.g. sewage sludge applications, and invertebrates are directly exposed. In this study, we investigate the potential of N-acetylcysteine (NAC) to reduce the toxic effects of Ag NM300 K (and AgNO3) on the soil invertebrate Enchytraeus crypticus. Ag NM300 K induces mortality, reproduction impairment, and avoidance. The addition of NAC to the soil showed a remarkable reduction in the toxicity of Ag, indicating that NAC can act as a detoxifying agent for terrestrial organisms exposed to Ag materials. That the reduction in toxicity likely is caused by thiol groups, was confirmed by GSH and GSSH studies. Identifying the mechanisms and hence alternatives that allow the recovery of contaminated soils is an important mitigation measure to promote environmental safety and reduce the associated risks to human health. Further, it may inform on strategies to implement in safe-by-design industry development.
Show more [+] Less [-]Commentary: An open appeal to the EPA for Superfund ERA reform
2020
Tannenbaum, Lawrence V.
The ecological risk assessment guidance of virtually all federal and state agencies, private companies, and other interests can be traced to that of the essential design of the U.S. Environmental Protection Agency (EPA). The EPA ecological risk assessment paradigm has remained unchanged for all intents and purposes since its inception 30 years ago, this despite criticism expressed repeatedly by some, for many years. Despite the discipline's name, a core paradigm shortcoming is its inability to express risk, the probability of a receptor-of-concern at a contaminated site developing a toxicological endpoint (e.g., reproductive impairment). Further, common site context and biological realities (e.g., site sizes; home ranges of receptors-of concern) allow for the supported challenges that risk assessments aren't needed altogether, and instances of ecological damage at sites being unknown. This commentary is an open appeal to the EPA to replace the paradigm it has set forth, dispensing with failed processes (e.g., endeavoring to assess risk potential at 75 year-old sites; endeavoring to assess risk potential to wide-ranging species at one-acre properties). The commentary invites the EPA to respond, not with counter-arguments, but rather with explanations for the Agency's resistance to acknowledging problems with its guidance, followed by the Agency commitment to sorely needed ERA reform.
Show more [+] Less [-]Urban airborne PM2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb
2020
Chen, Xiaoyu | Guo, Jing | Huang, Yunlong | Liu, Shan | Huang, Ying | Zhang, Zezhong | Zhang, Fang | Lu, Zhongbing | Li, Fang | Zheng, Jialin C. | Ding, Wenjun
Emerging evidence has showed that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM₂.₅) is associated with neurodegeneration. Our previous studies in vitro found that PM₂.₅ exposure causes primary neurons damage through activating microglia. However, the molecular mechanism of microglia-mediated neurotoxicity remains to elucidate. In this study, five groups (N = 13 or 10) of six-week-old male C57BL/6 mice were daily exposed to PM₂.₅ (0.1 or 1 mg/kg/day body weight), Chelex-treated PM₂.₅ (1 mg/kg/day body weight), PM₂.₅ (1 mg/kg/day body weight) plus CB-839 (glutaminase inhibitor), or deionized water by intranasal instillation for 28 days, respectively. Compared with the control groups, We found that PM₂.₅ triggered reactive oxygen species (ROS) generation and microglia activation evidenced by significant increase of ionized calcium binding adaptor molecule-1 (IBa-1) staining in the mouse olfactory bulbs (OB). Data from transmission electron microscope (TEM) images and Western blot analysis showed that PM₂.₅ significantly increased extracellular vesicles (EVs) release from OB or murine microglial line BV2 cells, and glutaminase C (GAC) expression and glutamate generation in isolated OB and BV2 cells. However, treatment with N-acetylcysteine (NAC) or CB-839 significantly diminished the number of EVs and the expression of GAC and abolished PM₂.₅-induced neurotoxicity. These findings provide new insights that PM₂.₅ induces oxidative stress and microglia activation through its metal contents and glutaminase-containing EVs in OBs, which may serve as a potential pathway/mechanism of excessive glutamate generation in PM₂.₅-induced neurotoxicity.
Show more [+] Less [-]Increased health threats from land use change caused by anthropogenic activity in an endemic fluorosis and arsenicosis area
2020
Yuan, Li | Fei, Wang | Jia, Feng | Junping, Lv | Qi, Liu | Fangru, Nan | Xudong, Liu | Lan, Xu | Shulian, Xie
Urbanization is conducive to promoting social development and improving living standards. However, the changing land use attributed to urbanization has placed both the environment and humans at risk. Based on the long-term monitoring and the land use change during 2010–2017, we investigated the exposure of fluoride (F) and arsenic (As) in groundwater. We analyzed the temporal and spatial variation of F and As from different land use changes. The study assessed health risk for children by calculating carcinogenic risk and non-carcinogenic risk. Furthermore, we mapped the distribution pattern of F and As using GIS. For the 768 water samples collected from 2010 to 2017, F concentrations ranged between 0.10 and 5.70 mg L⁻¹ (M = 0.68 ± 0.02 mg L⁻¹), As concentrations ranged between 0.50 and 71.50 μg L⁻¹ (M = 4.28 ± 0.28 μg L⁻¹). A concerning result showed that 6.77% of F concentrations larger than 1.5 mg L⁻¹ and 11.46% of As concentrations larger than 10 μg L⁻¹ based on the recommendation by WHO, respectively. Results proved that land use change caused by human activity increased groundwater pollution and placed human health at risk. High F and As risk were found in southern Taiyuan City. In particular, the groundwater of industrial land suffered from more severe pollution, especially at the frontier of urban and suburban areas in the southern part of Taiyuan City. Land use change attributed to industrial land resulted in major increases in the F and As concentrations in groundwater across 2010–2017. Both carcinogenic risk and non-carcinogenic risk in 2016–2017 were higher than that in 2010–2015. Rational land use planning, strict groundwater protection policies and the regular monitoring of pollution levels are necessary in order to prevent the adverse health of residents.
Show more [+] Less [-]Microplastics could be a threat to plants in terrestrial systems directly or indirectly
2020
Khalid, Noreen | Aqeel, Muhammad | Noman, Ali
Microplastics (MPs) are an emerging threat to ecosystem functioning and biota. The major sources of MPs are terrestrial and agricultural lands. But their fate, concentration in the terrestrial environment, and effects on soil and biota are poorly understood. There is a growing body of concern about the adverse effects of MPs on soil-dwelling organisms such as microbes in mycorrhizae and earthworms that mediate essential ecosystem services. Environmental concentrations and effects of MPs are considered to increase with increasing trend of its global production. MPs in the soil could directly impact plants through blocking the seed pore, limiting the uptake of water and nutrient through roots, aggregation, and accumulation in the root, shoot, and leaves. However, MPs can also indirectly impact plants by affecting soil physicochemical characteristics, soil-dwelling microbes, and fauna. An affected soil could impact plant community structure and perhaps primary production. In this article, we have assessed the potential direct and indirect impacts of MPs on plants. We have discussed both the positive and negative impacts of MPs on plants in terrestrial systems based on currently available limited literature on this topic and our hypothetical understandings. We have summarized the most current progress in this regard highlighting the future directions on microplastic research in terrestrial systems.
Show more [+] Less [-]