Refine search
Results 1311-1320 of 4,938
Synergistic effects of glyphosate formulation herbicide and tank-mixing adjuvants on Pardosa spiders Full text
2019
Niedobová, Jana | Skalský, Michal | Ouředníčková, Jana | Michalko, Radek | Bartošková, Adéla
Glyphosate-based herbicides are the world’s most consumed agrochemicals, and they are commonly used in various agroecosystems, including forests, as well as in urban zones and gardens. These herbicides are sold as formulations containing adjuvants. Other tank-mixing adjuvants (most often surfactants) are commonly added to these formulations prior to application. According to the manufacturers of agrochemicals, such tank mixes (as these are known in agronomic and horticultural practice) have modified properties and perform better than do the herbicides as used alone. The effects of these tank mixes on the environment and on beneficial arthropods are almost unknown. Therefore, we studied whether a herbicide formulation mixed with adjuvant has modified effects on one of the most common genera of ground-dwelling wolf spiders vis-à-vis the herbicide formulation and adjuvants themselves. Specifically, we studied the synergistic effect in the laboratory on the predatory activity (represented by the number of killed flies) of wolf spiders in the genus Pardosa after direct treatment using the glyphosate-based herbicide formulation Roundup klasik Pro®, Roundup klasik Pro® in a mixture with the surfactant Wetcit®, Roundup klasik Pro® in a mixture with the surfactant Agrovital®, and the surfactants alone. We found that pure surfactants as well as herbicide-and-surfactants tank mixes significantly decrease the predatory activity of Pardosa spiders in the short term even as Roundup klasik Pro® did not itself have any such effect. Our results support the hypothesis that plant protection tank mixes may have modified effect on beneficial arthropods as compared to herbicide formulations alone. Therefore, testing of pesticide tank mixes is highly important, because it is these tank mixes that are actually applied to the environment.
Show more [+] Less [-]Anaerobic digestion to reduce biomass and remove arsenic from As-hyperaccumulator Pteris vittata Full text
2019
da Silva, Evandro B. | Mussoline, Wendy A. | Wilkie, Ann C. | Ma, Lena Q.
The lack of efficient methods to treat As-rich biomass is a drawback for phytoremediation technology. In this study, we applied anaerobic digestion to reduce biomass and remove As from As-rich Pteris vittata biomass. P. vittata biomass including control (3.1 mg kg−1 As) and As-rich (2665 mg kg−1 As), together with positive and negative controls, was anaerobically digested at 35 °C for 35 d. Arsenic partitioning among gas, liquid and solid phases after anaerobic digestion was determined. Methane index potential assay was used to assess methane yields whereas liquid-displacement method was used to measure methane gas production. After 35 d, As partitioning in the liquid, solid and gas phases was 79, 30 and 1%, respectively. Besides, volatile solid was decreased from 91 to 12–17% total solid, while P. vittata biomass was decreased by 73–83%. Moreover, anaerobic digestion solubilized 76% As from P. vittata biomass, with 90% soluble As at 4.95 mg L−1 being recovered by As-Mg precipitation. Finally, methane production after 35 d was 197–212 LNCH4/kg volatile solid, showing slight As inhibition. Effective As removal from P. vittata biomass prior to disposal can improve the phytoremediation process.
Show more [+] Less [-]An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel Full text
2019
Gonçalves, Cátia | Martins, Marta | Sobral, Paula | Costa, Pedro M. | Costa, Maria H.
Plastic debris has been recognized as a growing threat to marine biota due to its widespread distribution and possible interactions with marine species. Concerns over the effects of plastic polymers in marine ecosystems is reflected in the high number of toxicological studies, regarding microplastics (<5 mm) and marine fauna. Although several studies reported that organisms ingest and subsequently eliminate microplastics (MP), the potential effects at organ and tissue level remain unclear, especially considering exposure to different microplastic sizes and concentrations. The present study aimed at investigating potential pathophysiological effects of the ingestion of MP by marine filter-feeders. For the purpose, Mediterranean mussel (Mytilus galloprovincialis) was exposed to spherical polystyrene MP (2 and 10 μm Ø) over short- and medium-term exposure periods, under single and combined concentrations that represent high, yet realistic doses (10 and 1000 MP mL−1). Overall, results suggest rapid MP’ clearance from water column by filtering, regardless of MP size. Ingestion occurred, identified by MP in the lumen of the gut (mostly in midgut region), followed by excretion through faeces. However, no MP were found in gills or digestive gland diverticula. Biochemical indicators for oxidative stress were generally irresponsive regardless of organ and time of exposure. Small foci of haemocytic infiltration in gastric epithelia were found, albeit not clearly related to MP ingestion. Globally, no evident histopathological damage was recorded in whole-body sections of exposed animals. The present findings highlight the adaptative ability of filter-feeding bivalves to cope with filtration of suspended MP, resulting in rapid elimination and reduced internal damage following ingestion of spherical MP. Nevertheless, the fact that the animals are able to translocate MP to the gut reveals that filter feeding organisms may indeed became a target of concern for fragmented materials with smaller, mixed sizes and sharper edges.
Show more [+] Less [-]Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment Full text
2019
Taylor, Allison R. | Wang, Jie | Liao, Chunyang | Schlenk, Daniel | Gan, Jay
Hydrophobic legacy contaminants like dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) were banned almost half a century ago. While their residues still remain in many environmental compartments, they have undergone extensive aging and likely have lower bioaccessibility (the available fraction) compared to fresh residues. However, risk assessment relies heavily on the use of total chemical concentration, rather than accounting for age-diminished bioaccessibility, likely leading to overestimated risks. In this study, we used 24 h Tenax desorption to measure the potential bioaccessibility of DDTs and PCBs in two sediment cores taken from the Palos Verdes Shelf Superfund site in the Pacific Ocean. The total concentrations of DDTs and PCBs from the core located at the sewage outfall (8C) were as high as 41,000–15,700 μg/kg (dry weight, dw) and 530-2600 μg/kg dw, respectively, while those from a location 7 km northeast of the outfall (3C) were 2–3 orders of magnitude lower. Bioaccessibility estimated by 24-h Tenax-aided desorption (F24h) decreased in the order of DDD > DDE > DDT for DDT derivatives, and PCB 52 > PCB 70 > PCB 153 for PCB congeners, showing a negative correlation with their log Kow. Due to the extensive aging, F24h values were <20% of the total chemical concentration for most contaminants and <5% for DDT, DDE and PCB 153, suggesting that aging greatly diminished their bioavailability. However, a quantitative relationship between F24h and sediment age along the vertical profile was not found, likely because the contaminant residues had undergone aging before their offsite transport and deposition onto the ocean floor. As the use of man-made chemicals such as DDT and PCBs was discontinued in the U.S. many decades ago, the reduction in their bioavailability due to aging may be universal and should be taken into consideration to avoid overly conservative risk predictions or unnecessary mitigation interventions.
Show more [+] Less [-]Antimony accumulation and iron plaque formation at different growth stages of rice (Oryza sativa L.) Full text
2019
Long, Jiumei | Tan, Di | Deng, Sihan | Li, Bingyu | Ding, Dan | Lei, Ming
To better understand the Sb phytoavailability in rice, we studied Sb accumulation in rice (Zhongjiazao-17, widely cultivated in Hunan province) at different growth stages based on adding SbIII and SbV to waterlogged soils in 10, 50 and 100 mg kg−1 treatment levels. Proportional exogenous SbIII and SbV remained in the soil solution after equilibration. In SbIII treatments, the iron plaque (IP) amounts and Sb in rice roots sharply increased from tillering to jointing stages and then reduced at the following stages. However, in SbV treatments, they increased continuously from tillering to maturing stages. The accumulation trends of Sb in straws, ears and grains were consistent in SbIII and SbV treatments, rising from tillering to jointing stages followed with reducing from jointing to flowering stages slightly, and rising again significantly from flowering to maturing stages. The Tfsoil-grain values in all the Sb treatments were low (0.77 × 10−3-5.1 × 10−3), However, when Sb in waterlogged soils were higher than 50 mg kg−1, it could pose human health risk for residents.
Show more [+] Less [-]Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals Full text
2019
Guo, Hui-bin | Li, Mei | Lyu, Yan | Cheng, Tian-tao | Xv, Jun–jun | Li, Xiang
Particulate matter (PM) oxidative potential (OP) is an emerging health metric, but studies examining the OP of indoor PM are rare. This paper focuses on the relationships between respiratory exposure to OP and PM water-soluble composition in indoor environments. Size-resolved PM samples were collected between November 2015 and June 2016 from an office, home (including bedroom, living room, and storeroom), and laboratory using a MOUDI sampler. Particles from each source were segregated into eleven size bins, and the water-soluble metal content and dithiothreitol (DTT) loss rate were measured in each PM extract. The water-soluble OP (OPwₛ) of indoor PM was highest in the office and lowest in the home, varying by factors of up to 1.2; these variations were attributed to differences in occupation density, occupant activity, and ventilation. In addition, the particulate Cu, Mn, and Fe concentrations were closely correlated with OPwₛ in indoor particles; the transition metals may have acted as catalysts during oxidation processes, inducing ·OH formation through the concomitant consumption of DTT. The OPwₛ particle size distributions featured single modes with peaks between 0.18 and 3.2 μm across all indoor sites, reflecting the dominant contribution of PM₃.₂ to total PM levels and the enhanced oxidative activity of the PM₃.₂ compared to PM>₃.₂. Lung-deposition model calculations indicated that PM₃.₂ dominated the pulmonary deposition of the OPwₛ (>75%) due to both the high levels of metals content and the high deposition efficiency in the alveolar region. Therefore, because OPwₛ has been directly linked to various health effects, special attention should be given to PM₃.₂.
Show more [+] Less [-]Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain) Full text
2019
Ruiz-Orejón, Luis F. | Mourre, Baptiste | Sardá, Rafael | Tintoré, Joaquín | Ramis-Pujol, Juan
Plastic pollution is widespread in all the oceans and seas, representing a significant threat to most of their ecosystems even in marine protected areas (MPAs). This study determines the floating plastic distribution in four different periods between 2014 and 2015 in the recently approved Menorca Channel MPA (Balearic Islands). Plastic debris were persistent during all sampling periods on the surface of the Channel, composed mainly by the microplastic sizes. Average particle abundances ranged from 138,293 items⋅km−2 in autumn to 347,793 items⋅km−2 during the spring, while weight densities varied from 458.15 g(DW)⋅km−2 in winter to 2016.67 g(DW)⋅km−2 in summer. Rigid plastics were the most frequent particles in all the periods analysed (from 89.40%-winter to 94.54%-spring). The high-resolution and particle distribution models corroborated that the oceanographic variability shapes different patterns of presence of plastics, and in particular the existence of areas with almost no plastics.
Show more [+] Less [-]Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields Full text
2019
Tschoeke, Paulo Henrique | Oliveira, Eugênio E. | Dalcin, Mateus S. | Silveira-Tschoeke, Marcela Cristina A.C. | Sarmento, Renato A. | Santos, Gil Rodrigues
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Show more [+] Less [-]Sustainable alternatives to 1,3-dichloropropene for controlling root-knot nematodes and fungal pathogens in melon crops in Mediterranean soils: Efficacy and effects on soil quality Full text
2019
Montiel-Rozas, María del Mar | Hurtado-Navarro, María | Díez-Rojo, Miguel Ángel | Pascual, José A. (José Antonio) | Ros, Margarita
The control of agricultural pests is key to maintain economically viable crops. Increasing environmental awareness, however, is leading to more restrictive European policies regulating the use of certain pesticides due to their impact on human health and the soil system. Given this context, we evaluated the efficacy of three alternatives to the soil fumigant 1,3-dichloropropene (1,3-D), which is currently banned in Europe: two non-fumigant nematicides [oxamyl (OX) and fenamiphos (FEN)] and the soil fumigant dimethyl disulfide (DMDS). We analysed the efficiency of these pesticides against root-knot nematodes and soil fungal pathogens (determined by qPCR) as well as the soil biological quality after treatments application (estimated by enzyme activities). Among treatments, 1,3-D and DMDS significantly reduced nematode populations. FEN was more effective in sandy soil, while OX had no effect in any soil. OX and FEN had no effect on fungal pathogens, whereas DMDS reduced the abundance of Rhizoctonia solani and Fusarium solani at the root level in clay-loam soil. Soil quality decreased after treatment application but then recovered throughout the experiment, indicating the possible dissipation of the pesticides. Our findings support DMDS as a potential sustainable alternative for controlling root-knot nematodes and fungal pathogens due to its effectiveness in both studied soils, although its negative impact on soil biological quality in sandier soils must be taken into account.Main finding of the work. DMDS is a reliable alternative to 1,3-D for controlling agricultural pest but its inhibitory effect on soil enzyme activities varied according to the soil characteristics.
Show more [+] Less [-]Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment Full text
2019
Mueller, Andrea | Ulrich, Nadin | Hollmann, Josef | Zapata Sanchez, Carmen E. | Rolle-Kampczyk, Ulrike E. | von Bergen, Martin
A correct description of the concentration and distribution of particle bound polycyclic aromatic hydrocarbons is important for risk assessment of atmospheric particulate matter. A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis. The instrumental LOD ranged between 0.03 and 0.7 pg/μL for PAHs, 0.2–7.9 pg/μL for hydroxyl and oxy PAHs, 0.1–7.4 pg/μL for nitro PAHs and 0.06–0.3 pg/μL for methyl-PAHs. As an example for the relevance of this method samples of PM₁₀ were collected at six sampling sites in Medellin, Colombia, extracted and the concentration of 64 compounds was determined. The 16 PAHs from the EPA priority list contributed only from 54% to 69% to the sum of all analyzed compounds, PAH with high molecular weight accounted for 8.8%–18.9%. Benzo(a)pyrene equivalents (BaPₑq) were calculated for the estimation of the life time cancer (LCR). The LCR according to the samples ranged from 2.75 × 10⁻⁵ to 1.4 × 10⁻⁴ by a calculation with toxic equivalent factors (TEF) and 5.7 × 10⁻⁵ to 3.8 × 10⁻⁴ with potency equivalent factor (PEF). By using the new relative potency factors (RPF) recommended by US Environmental Protection Agency (U.S.EPA) the LCR ranged from 1.3 × 10⁻⁴ to 7.2 × 10⁻⁴. Hence, it was around six times higher than the well-known TEF. The novel method enables the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.
Show more [+] Less [-]