Refine search
Results 1311-1320 of 8,010
Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta Full text
2021
Edegbene, Augustine O. | Odume, Oghenekaro N. | Arimoro, Francis O. | Keke, Unique N.
Urbanisation of riverine landscape is an increasing threat to the functionality of river ecosystems. In this study, we identify and classify macroinvertebrates indicator signature traits and ecological preferences.We hypothesised that urban pollution would differentially influence the distribution of macroinvertebrate traits and ecological preferences along a gradient of water quality deterioration. Hence, we identified and classified potential biological indicators traits and ecological preferences that were deemed tolerant of or sensitive to urban pollution gradient in the Niger Delta region of Nigeria. Physico-chemical variables (water temperature, depth, flow velocity, dissolved oxygen, biochemical oxygen demand, electrical conductivity (EC), nitrate, phosphate), and macroinvertebrates were collected from 2008 to 2012 seasonally during the wet and dry seasons once in a month in 11 stations in eight river systems. The results based on RLQ, fourth-corner and Kruskal-Wallis analyses indicate that traits/ecological preferences such as tegumental/cutaneous respiration, cased/tubed body armouring, a preference for silty water, bivoltinism, burrowing and a high tolerance for oxygen depletion, were statistically significantly associated with the heavily impacted stations. These traits were positively correlated with physico-chemical variables such as EC, nitrate and phosphate indicative of urban pollution. On the other hand, traits/ecological preferences such as permanent attachment, crawling, swimming, univoltinism and a moderate sensitivity to oxygen depletion were associated with the least impacted stations and were negatively correlated with physico-chemical variables indicative of urban pollution. Overall, the observed differential responses of traits and ecological preferences to urban pollution along a gradient of water quality impairment suggest that traits and ecological preferences can serve as useful biological indicators and thus supports the growing evidence of the utility of the trait-based approach.
Show more [+] Less [-]Quantifying arsenic post-depositional mobility in lake sediments impacted by gold ore roasting in sub-arctic Canada using inverse diagenetic modelling Full text
2021
Leclerc, Émilie | Venkiteswaran, Jason J. | Jasiak, Izabela | Telford, James V. | Schultz, Mackenzie D.J. | Wolfe, Brent B. | Hall, Roland I. | Couture, Raoul-Marie
Lake sediments are widely used as environmental archives to reconstruct past changes in contaminants deposition, provided that they remain immobile after deposition. Arsenic (As) is a redox-sensitive element that may be redistributed in the sediments during early diagenesis, for instance along with iron and manganese, and thus depth profiles of As might not provide a reliable, unaltered record of past deposition. Here, we use inverse diagenetic modelling to calculate fluxes of As across the sediment-water interface and interpret As sedimentary records in eight lakes along a 80 km transect from the Giant and Con mines, Northwest Territories, Canada. The sediment cores were dated using ²¹⁰Pb methods and analyzed for solid-phase and porewater As, Fe, Mn and organic C concentrations. We reconstructed the history of As deposition by correcting for the varying mobility patterns and calculated contemporary As deposition fluxes. Correction for diagenesis was substantial for three of the eight lakes, suggesting that lakes with lower sedimentation rates, which allows longer residence of As within the reactive zones defined by the model, enhance the influence of diagenesis. Results show that solid phase As peaks coincides with the period of high emissions from past gold ore roasting activities. Results also show that sediments sustained present-day As fluxes to the water column of study lakes within 50 km of the mines, while sediment in study lakes further than 50 km acted as As sinks instead.
Show more [+] Less [-]Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling Full text
2021
Yang, Kai | Wang, Xilong | Cheng, Hefa | Tao, Shu
Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.
Show more [+] Less [-]Environmental aspects of UV-C-based processes for the treatment of oxytetracycline in water Full text
2021
Stankov, Vladimir | Stankov, Mirjana Novak | Cvetnić, Matija | Sigurnjak Bureš, Marija | Ukić, Šime | Kučić Grgić, Dajana | Lončarić Božić, Ana | Kusic, Hrvoje | Bolanča, Tomislav
This study is focused on oxytetracycline (OTC) degradation by direct photolysis (UV–C) and photobased advanced oxidation processes (AOPs) (UV–C/H₂O₂ and UV-C/S₂O₈²⁻). OTC degradation pathways were revealed by LC-MS/MS and GC-MS/MS analyses. The evolution/degradation profiles of 12 detected byproducts were correlated with changes in biodegradability and toxicity toward Vibrio fischeri recorded during the treatment. Both photobased AOPs yielded higher OTC degradation and mineralization rates than direct photolysis. The OTC degradation pathway was found to be rather specific regarding the main reactive species (HO• or SO₄•⁻)/mechanism, yielding different patterns in toxicity changes, while biodegradability profiles were less affected. Biodegradability was correlated with the observed degradation and mineralization kinetics. The recorded toxicity changes indicate that byproducts formed by initial OTC degradation are more toxic than the parent pollutant. The prolonged treatment resulted in the formation of byproducts that contributed to a decrease in toxicity and an increase in biodegradability, as particularly emphasized in the case of UV-C/S₂O₈²⁻.
Show more [+] Less [-]Effects of glyphosate-based herbicide-contaminated diets on reproductive organ toxicity and hypothalamic-pituitary-ovarian axis hormones in weaned piglets Full text
2021
Fu, Huiyang | Gao, Feng | Wang, Xiaoxu | Tan, Peng | Qiu, Shengnan | Shi, Baoming | Shan, Anshan
At present, glyphosate (GLP) is the most produced and used herbicide in the world. With the large-scale use of glyphosate-based herbicides (GBHs), their toxic effects on animals and plants have increasingly become a concern. Based on the Codex Alimentarius Commission (CODEX) dose (20 mg kg⁻¹) and the dose set by the government (40 mg kg⁻¹), four experimental groups in which Roundup® (R) herbicide was added to the feed of weaned piglets at GLP concentrations of 0, 10, 20, and 40 mg kg⁻¹ were designed. The results showed that R had no significant effect on the vulvar size or index of reproductive organs but that it could affect the tissue morphology and ultrastructure of the uterus and ovary. With the increase in GLP concentration, the activities of antioxidant enzymes [SOD (P < 0.05) and GPx (P = 0.002)] in the uterus showed significant increases. Compared with the control group, the content of hydrogen peroxide (H₂O₂) in the treatment groups increased significantly (P < 0.05), the malondialdehyde (MDA) content in the 10 mg kg⁻¹ treatment group was significantly higher than that in the control group. We measured hypothalamic-pituitary-ovarian axis (HPOA) hormones and also found that GLP significantly increased luteinizing hormone-releasing hormone (LHRH), gonadotropin-releasing hormone (GnRH) and testosterone (T) content (P < 0.05) and decreased follicle-stimulating hormone (FSH) content (P < 0.05). In summary, although R does not affect the vulvar size or reproductive organ index of weaned piglets, it changes the morphology and ultrastructure of the uterus and ovaries, interferes with the synthesis and secretion of HPOA hormones, and causes changes in the balance of the antioxidant system of uterus. This study provided a theoretical basis for preventing reproductive system harm caused by GBHs.
Show more [+] Less [-]The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta Full text
2021
Strobl, Verena | Albrecht, Matthias | Villamar-Bouza, Laura | Tosi, Simone | Neumann, Peter | Straub, Lars
The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g⁻¹) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.
Show more [+] Less [-]Atmospheric phthalate pollution in plastic agricultural greenhouses in Shaanxi Province, China Full text
2021
Wang, Xinkai | Zhang, Yanxia | Huang, Biao | Chen, Zhikun | Zhong, Ming | Wang, Weixi | Liu, Xiaofei | Fan, Ya’ nan | Hu, Wenyou
Phthalate pollution in soil and vegetables in plastic agricultural greenhouses has attracted wide concern. Investigating airborne phthalates in this environment can improve understanding of air-soil or air-vegetable phthalate migration. However, studies of phthalates in plastic agricultural greenhouse air are rare. To fill this gap, 25 gas-phase and 23 particle-phase samples were collected from 12 typical plastic greenhouses in Shaanxi. 16 types of phthalates were measured by a gas chromatography-mass spectrometry system (GC-MS) to analyse their pollution features and variations. Results showed that in the air of the plastic greenhouses, the median concentration of the sum of sixteen type phthalates (∑₁₆ phthalates) was 5305 ng m⁻³, with 5th-95th value of 1214–9616 ng m⁻³. Phthalates in gas-phase samples were over 100 times higher than the levels in particle-phase samples. Air phthalate concentrations in the plastic greenhouses were higher than those in the control groups (P < 0.05). Air bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) accounted for 66.9% and 29.3% of total ∑₁₆ phthalate concentrations, respectively. Air phthalate concentrations in the plastic greenhouses in winter were 1.1–5.3 times higher than the levels in summer respectively (P < 0.05). Gas-particle partition coefficients (KP) values of DEHP in summer (median of 1.52 × 10⁻⁴ m³ μg⁻¹) were higher than KP values of DnBP in summer (0.60 × 10⁻⁴ m³ μg⁻¹). Log-transformed KP values of DnBP and DEHP were linear correlated to the reciprocal of air temperatures, respectively (P < 0.05).
Show more [+] Less [-]Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures Full text
2021
Thind, Parteek Singh | Sareen, Arjun | Singh, Dapinder Deep | Singh, Sandeep | John, Siby
COVID-19 induced pandemic situations have put the bio-medical waste (BMW) management system, of the world, to test. Sudden influx, of COVID-infected patients, in health-care facilities, has increased the generation of yellow category BMW (Y-BMW) and put substantial burden on the BMW-incineration units of India. This study presents the compromising situation of the BMW-incineration units of India, in the wake of COVID-19 pandemic, from 21st March 2020 to 31st August 2020. This analysis revealed that on an average each COVID-infected patient in India generates approximately 3.41 kg/d of BMW and average proportion of Y-BMW in it is 50.44%. Further, it was observed that on 13th July 2020, the total Y-BMW, generated by both the normal and COVID-infected patients, fully utilized the BMW-incineration capacity of India. Also, it was made evident that, during the study period, BMW-incineration emitted several pollutants and their concentration was in the order: NOₓ > CO > SOₓ > PM > HCl > Cd > Pb > Hg > PCBs > Ni > Cr > Be > As. Subsequently, life time cancer risk assessment depicted that with hazard quotient >10⁻⁶, Cd may induce carcinogenic health impacts on both the adults and children of India. Therefore, to mitigate the environmental-health impacts associated with the incineration of BMW, evaluation of various options, viz., alternative technologies, substitution of raw materials and separate treatment of specific wastes, was also done. It is expected that the findings of this study may encourage the global auditory comprising scientific community and authorities to adopt alternate BMW-management strategies during the pandemic.
Show more [+] Less [-]Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta, Canada Full text
2021
Golzadeh, Nasrin | Barst, Benjamin D. | Baker, Janelle M. | Auger, Josie C. | McKinney, Melissa A.
Rising global demand for energy promotes extensive mining of natural resources, such as oil sands extractions in Alberta, Canada. These extractive activities release hazardous chemicals into the environment, such as polycyclic aromatic compounds (PACs), which include the parent polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and sulfur-containing heterocyclic dibenzothiophenes (DBTs). In areas adjacent to industrial installations, Indigenous communities may be exposed to these PACs through the consumption of traditional foods. Our objective was to evaluate and compare the concentrations of total PACs (∑PAC), expressed as the sum of the 16 U.S. EPA priority PAHs (∑PAH), 49 alkylated PAHs (∑alkyl-PAH), and 7 DBTs (∑DBT) in plant and animal foods collected in 2015 by the Bigstone Cree Nation in Alberta, Canada. We analyzed 42 plant tissues, 40 animal muscles, 5 ribs, and 4 pooled liver samples. Concentrations of ∑PAC were higher in the lichen, old man’s beard (Usnea spp.) (808 ± 116 ng g⁻¹ w.w.), than in vascular plants, and were also higher in smoked moose (Alces alces) rib (461 ± 120 ng g⁻¹ w.w.) than in all other non-smoked animal samples. Alkylated-PAHs accounted for between 63% and 95% of ∑PAC, while the concentrations of ∑PAH represented 4%–36% of ∑PAC. Contributions of ∑DBT to ∑PAC were generally lowest, ranging from <1% to 14%. While the concentrations of benzo(a)pyrene (B[a]P) and ∑PAH4 (∑benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and B[a]P) in all samples were below guideline levels for human consumption as determined by the European Commission, guideline levels for the more prevalent alkylated PAHs are not available. Given the predominance of alkylated PAHs in all food samples and the potentially elevated toxicity relative to parent PAHs of this class of PACs, it is critical to consider a broader range of PACs other than just parent PAHs in research conducted close to oil sands mining activities.
Show more [+] Less [-]Responses of rhizosphere bacterial communities, their functions and their network interactions to Cd stress under phytostabilization by Miscanthus spp Full text
2021
Chen, Zhao-Jin | Tian, Wei | Li, Ying-Jun | Sun, Le-Ni | Chen, Yan | Zhang, Hao | Li, Yuying | Han, Hui
Miscanthus has good tolerance to heavy metals (HMs) and has received increasing attention in studies of HM-contaminated soil remediation. In this study, four Miscanthus cultivars (M. lutarioriparius Xiangnadi NO4, M. sinensis Xiangmang NO1, M. lutarioriparius × M. sinensis hybrid Xiangzamang NO1, and M. floridulus Wujiemang NO1) that grow in China were studied. Their tolerance and enrichment abilities in soils containing 50 mg kg⁻¹ cadmium (Cd) and the structure and function of their rhizosphere bacterial communities during the remediation process were analyzed. The results exhibiting a tolerance index (TI) higher than 75 in roots and the aboveground parts (TI > 60, indicating highly tolerant plants) indicated that all four Miscanthus cultivars were tolerant to high Cd concentrations. Moreover, Cd was mainly enriched in roots, the translocation ability from roots to aboveground parts was weak, and the four cultivars exhibited phytostabilization ability in Cd-contaminated soils. High-throughput sequencing (HTS) analysis showed that the Miscanthus rhizosphere bacterial community comprised 33 phyla and 446 genera, including plant growth-promoting rhizobacteria (PGPRs), such as Bacillus, Sphingomonas, and Mesorhizobium. The addition of Cd affected the Miscanthus rhizosphere bacterial community and reduced community diversity. Phylogenetic molecular ecological networks (pMENs) indicated that Cd addition reduced interactions between Miscanthus rhizosphere bacteria and thereby led to a simpler network structure, increased the number of negative-correlation links, enhanced the competition between rhizosphere bacterial species, reduced the number of key bacteria, and changed the composition of those bacteria. PICRUSt functional predictive analysis indicated that Cd stress reduced soil bacterial functions in the Miscanthus rhizosphere. The results of this study provide a basis for the remediation of Cd-contaminated soils by Miscanthus and provide a reference for the subsequent regulation of Miscanthus remediation efficiency by PGPRs or key bacteria.
Show more [+] Less [-]