Refine search
Results 1311-1320 of 7,290
The respiratory cytotoxicity of typical organophosphorus flame retardants on five different respiratory tract cells: Which are the most sensitive one? Full text
2022
Chen, Jingyi | Li, Guiying | Yu, Hang | Liu, Hongli | An, Taicheng
Triphenyl phosphate (TPHP) is a frequently used flame retardant and indoor semi-volatile pollutant exposing humans with endocrinal disrupting effects. However, its respiratory tract toxicity remains unclear. Herein, we mainly focused on exploring the cytotoxicity of TPHP to the cells from five different parts of the human respiratory tract (from top to bottom): human nasal epithelial (HNEpC) cells, human bronchial epithelial (16HBE) cells, normal nasopharyngeal epithelial (NP69) cells, human lung epithelial cells (Beas-2B) cells, and human lung fibrocells (HFL1 cells) cells. The cell viability, micronucleus induction, endoplasmic reticulum stress gene, intracellular Ca²⁺ concentration, mitochondrial membrane potential (MMP) were investigated in short-term as well as extended exposure of TPHP. HFL1 and HNEpC cells were found to be irreversible damage, while other three type cells achieved homeostasis through self-rescue. Moreover, expression of downstream genes of Nrf2 signaling pathway were upregulated for 1.3–7.0 times and glutathione detoxification enzyme activity changed for 2–10 (U/mg protein) in HNEpC cells. Furthermore, the vascular endothelial growth factor (VEGF), a disease-related factor, increased 1.0–3.5-fold in HNEpC cells. RNA-sequencing results suggested that protein linkage recombination, molecular function regulation and metabolic processes signal pathway were all affected by TPHP exposure in HNEpC. This is a first report to compare respiratory cytotoxicity in whole human respiratory tract under OPFR exposure and found HNEpC cells were the most sensitive target of TPHP. Molecular biological mechanisms uncovered that TPHP exposure in HNEpC can induce the activation of MAPK signal pathway and demonstrate potential respiratory growth differentiation and stress disorder in human nasal cells upon TPHP exposure.
Show more [+] Less [-]Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: Implications for risk estimation Full text
2022
Lyu, Yang | Zhong, Fuyong | Tang, Zhenwu | He, Ying | Han, Xue
Organic ultraviolet absorbents (UVAs) are increasingly reported in environmental matrices and organisms. However, available information on the bioaccumulation of UVAs in freshwater species is insufficient and their trophodynamics in lake food webs remain unknown. We measured the concentrations of twelve UVAs in the wild species from Lake Chaohu. Except for UV-320 not detected, the other UVAs were prevalent in the study species and their total concentrations were in the range of 5.44–131 ng/g dry weight, which were comparable to the concentrations reported in other waters. Compound and species-specific accumulations of UVAs in the organisms were observed. In the lake, the log-transformed concentrations of 4-methyl benzylidene camphor, octyl p-dimethylaminobenzoate, UV-326, and UV-327 related significantly to the trophic levels of species separately. The calculated trophic magnification factors (TMFs) of the four UVAs were 3.79, implying trophic magnification, and 0.18, 0.40 and 0.58, suggesting trophic dilution, respectively. These suggested that the magnification potential and the associated risks of individual UVAs in freshwater lake differed. To our knowledge, this is the first report of these TMFs in lake food webs. However, more investigation is needed to characterize their trophodynamic behaviors in lakes because food web characteristics likely affect trophic transfer of these chemicals.
Show more [+] Less [-]BHPF exposure impairs mouse and human decidualization Full text
2022
Jin, Zhi-Yong | Liu, Cheng-Kan | Hong, Yu-Qi | Liang, Yu-Xiang | Liu, Li | Yang, Zeng-Ming
Although BHPF has been widely used in plastic manufacturing as a substitute for BPA, current evidence suggests that BHPF also causes harmful effects on reproduction. However, effects of BHPF on mammalian early pregnancy are still poorly defined. This study aimed to explore the effects of BHPF on early pregnancy, especially decidualization and embryonic development in mice and human beings. The results showed that 50 and 100 mg/kg BHPF exposure reduced birth weight, and implantation site weight on the day 8 of pregnancy in mice. Because BHPF inhibits both embryo development and artificial decidualization in mice, suggesting that the detrimental effects of BHPF should be from its effects on embryo development and decidualization. Under in vitro decidualization, 10 μM BHPF inhibits decidualization and leads to disordered expression of Lamin B1 and collagen in mice. In addition, 10 μM BHPF also inhibits decidualization, and causes disordered expression of both collagen III and Lamin B1 under human in vitro decidualization. However, collagen III supplementation can rescue BHPF inhibition on decidualization. Further, our study demonstrates that BHPF impairs human decidualization through the HB-EGF/EGFR/STAT3/Collagen III pathway. Taken together these data suggest that exposure to BHPF impairs mouse and human decidualization during early pregnancy.
Show more [+] Less [-]Selective pressure on microbial communities in a drinking water aquifer – Geochemical parameters vs. micropollutants Full text
2022
Aldas-Vargas, Andrea | Hauptfeld, Ernestina | Hermes, Gerben D.A. | Atashgahi, Siavash | Smidt, Hauke | Rijnaarts, Huub H.M. | Sutton, Nora B.
Groundwater quality is crucial for drinking water production, but groundwater resources are increasingly threatened by contamination with pesticides. As pesticides often occur at micropollutant concentrations, they are unattractive carbon sources for microorganisms and typically remain recalcitrant. Exploring microbial communities in aquifers used for drinking water production is an essential first step towards understanding the fate of micropollutants in groundwater. In this study, we investigated the interaction between groundwater geochemistry, pesticide presence, and microbial communities in an aquifer used for drinking water production. Two groundwater monitoring wells in The Netherlands were sampled in 2014, 2015, and 2016. In both wells, water was sampled from five discrete depths ranging from 13 to 54 m and was analyzed for geochemical parameters, pesticide concentrations and microbial community composition using 16S rRNA gene sequencing and qPCR. Groundwater geochemistry was stable throughout the study period and pesticides were heterogeneously distributed at low concentrations (μg L−1 range). Microbial community composition was also stable throughout the sampling period. Integration of a unique dataset of chemical and microbial data showed that geochemical parameters and to a lesser extent pesticides exerted selective pressure on microbial communities. Microbial communities in both wells showed similar composition in the deeper aquifer, where pumping results in horizontal flow. This study provides insight into groundwater parameters that shape microbial community composition. This information can contribute to the future implementation of remediation technologies to guarantee safe drinking water production.
Show more [+] Less [-]Subtle ecosystem effects of microplastic exposure in marine mesocosms including fish Full text
2022
Foekema, Edwin M. | Keur, Martijn | Van Der Vlies, Liesbeth | Van Der Weide, Babeth | Bittner, Oliver | Murk, Albertinka J.
For two months, communities in 5.8 m3 outdoor marine mesocosms were exposed to 700 μm sphere-shaped polystyrene (PS) beads in dosages between 0.08 and 80 g/m2 . Barnacle (Semibalanus balanoides) densities were reduced at dosages of 0.8 g/m2 onwards without following a standard dose response curve. Lugworms and fish (Solea solea) ingested PS-beads without accumulating them. Lugworms (Arenicola marina) ingested the beads nonselective with the sediment without negative effects. The fish seemed to ingest the plastics only occasionally and at the final sampling day even in the highest dosed mesocosms (>30 beads/cm2) only 20% contained plastic. The condition index of the fish was slightly reduced in mesocosms with dosages of 0.8 g/m2 onwards. No difference in condition was found between fish with and without ingested plastic across mesocosms, illustrating the difficulty to relate plastic ingestion with condition from field data. The fish also ingested mollusks with shells exceeding the size of the PS-beads. Bivalves rejected the PS-beads as pseudofeces, without obvious impact on their condition. Mussel’s (Mytilus edulis) pseudofeces present an effective matrix to monitor microplastic presence in the water column. Species richness and diversity of the pelagic and benthic community were not affected although, a trend was found that the lower microplastic dosages had a positive effect on the total abundance of benthic invertebrates. In general, the observed effects at even the highest exposure concentrations were that subtle that they will be obscured by natural variation in the field. This underlines the importance of experiments under semi-field conditions for meaningful assessment of the ecological impact of microplastics. This study was performed with the real life, non-toxic, sphere-shaped polystyrene beads as were lost during an actual spill near the Dutch Wadden sea in January 2019. We recommend future mesocosm studies with other types of microplastics, including microfibers, weathered microplastics from sea, and smaller sized particles down to nanoplastics.
Show more [+] Less [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea Full text
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González-Fernández, Daniel | van Emmerik, Tim
The quest for the missing plastics: Large uncertainties in river plastic export into the sea Full text
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González-Fernández, Daniel | van Emmerik, Tim
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macroplastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
Show more [+] Less [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea Full text
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González-Fernández, Daniel | van Emmerik, Tim
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macroplastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
Show more [+] Less [-]The quest for the missing plastics: Large uncertainties in river plastic export into the sea Full text
2022
Roebroek, Caspar T.J. | Laufkötter, Charlotte | González Fernández, Daniel | van Emmerik, Tim | Biología
Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogenisation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macro-plastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.
Show more [+] Less [-]Toxicological impact of environmental microplastics and benzo[a]pyrene in the seaworm Hediste diversicolor under environmentally relevant exposure conditions Full text
2022
Abouda, Siwar | Missawi, Omayma | Cappello, Tiziana | Boughattas, Iteb | De Marco, Giuseppe | Maisano, Maria | Banni, Mohamed
Nowadays, marine ecosystems are under severe threat from the simultaneous presence of multiple stressors, including microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P). In addition to their presence in various marine compartments, there are increasing concerns on the potential capacity of MPs to sorb, concentrate and transfer these pollutants in the environment. Although their ecotoxicological impacts are currently evident, few works have studied the combined effects of these contaminants. Therefore, the major purpose of this work was to assess the toxicity of environmental relevant concentrations of MPs (<30 μm) and B[a]P, alone and in mixture, in the seaworm Hediste diversicolor by exploring their accumulation and hazardous biological effects for 3 and 7 days. Environmental MPs were able to increase B[a]P in a time-dependent manner. The obtained results showed that individual treatments, as well as co-exposure to contaminants, caused cytotoxicity and genotoxicity in the cœlomic fluid cells, while oxidative stress effects were observed at tissue and gene levels associated with alteration in neurotransmission. Overall, our findings provide additional clues about MPs as organic pollutant vectors in the marine environment, and contribute to a clearer understanding of their toxicological risk to aquatic invertebrates.
Show more [+] Less [-]Natural colloids at environmentally relevant concentrations affect the absorption and removal of benzophenone-3 in zebrafish Full text
2022
Sun, Yu | Lü, Guanghua | Zhang, Peng | Wang, Ying | Ling, Xin | Xue, Qi | Yan, Zhenhua | Liu, Jianchao
Aquatic natural colloids are closely related to the environmental behavior of pollutants, which may affect their bioavailability in aquatic organisms. This study explored the potential mechanisms of the natural colloids at environmentally relevant concentrations affecting the bioaccumulation process of benzophenone-3 (BP3) in zebrafish (Danio rerio). The results of kinetic model fitting showed that the natural colloids decreased the uptake and loss rate of BP3 by zebrafish but prolonged the time to reach the cumulative equilibrium, eventually resulting in a higher cumulative concentration in zebrafish. According to the tissue concentration at equilibrium and the results of toxicokinetic analysis, the presence of high molecular colloids could enhance the bioaccumulation of freely dissolved BP3 due to its high desorption rate with BP3 in the intestines of fish, increasing the freely dissolved BP3 concentrations to which zebrafish were exposed. Both natural colloids and BP3 could enhance the cell permeability of zebrafish, which allowed colloid-bound BP3 to directly enter the fish and accumulate in its muscle. Besides, although both natural colloids and BP3 could cause the metabolic disorders in adult zebrafish, they affected the physiological and biochemical activities of zebrafish through different pathways. The disturbance of glutathione metabolism in zebrafish induced by natural colloids may be the reason for the diminished ability of zebrafish to clear and transform BP3 in the mixture system. The carrier effect of natural colloids and reduced clearance ability of zebrafish eventually increased the bioaccumulation of BP3 in zebrafish. This study highlights the significance of natural colloids at environmentally relevant concentrations on the biological effects of emerging contaminants in actual waters, however, natural colloids are always ignored in most field investigation of pollutants, which would ultimately lead to an underestimation of the true ecological risk of pollutants.
Show more [+] Less [-]Combined maize straw-biochar and oxalic acids induced a relay activity of abundant specific degraders for efficient phenanthrene degradation: Evidence based on the DNA-SIP technology Full text
2022
Li, Xiaona | Yao, Shi | Bolan, Nanthi | Wang, Zhenyu | Jiang, Xin | Song, Yang
Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.
Show more [+] Less [-]Oxygen sensors mediated HIF-1α accumulation and translocation: A pivotal mechanism of fine particles-exacerbated myocardial hypoxia injury Full text
2022
Zhang, Ze | Wu, Liu | Cui, Tenglong | Ahmed, Rifat Zubair | Yu, Haiyi | Zhang, Rong | Wei, Yanhong | Li, Daochuan | Zheng, Yuxin | Chen, Wen | Jin, Xiaoting
Epidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM₂.₅) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM₂.₅ led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM₂.₅-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury. Moreover, the declined ATP level due to the HIF-1α-mediated energy metabolism remodeling from β-oxidation to glycolysis had a critical role in the PM₂.₅-increased myocardial hypoxia injury. The in-depth analysis delineated that PM₂.₅ exposure decreased the binding of prolyl hydroxylase domain 2 (PHD2) and HIF-1α and subsequent ubiquitin protease levels, thereby leading to the accumulation of HIF-1α. Meanwhile, factor-inhibiting HIF1 (FIH1) expression was down-regulated by PM₂.₅, resulting in the enhanced translocation of HIF-1α to the nucleus. Overall, our study provides valuable insight into the regulatory role of oxygen sensor-mediated HIF-1α stabilization and translocation in PM-exacerbated myocardial hypoxia injury, we suggest this adds significantly to understanding the mechanisms of haze particles-caused burden of cardiovascular disease.
Show more [+] Less [-]