Refine search
Results 1321-1330 of 7,240
Effect of CO2 driven ocean acidification on the mud crab Scylla serrata instars
2022
Thangal, Said Hamid | Muralisankar, Thirunavukkarasu | Anandhan, Krishnan | Gayathri, Velusamy | Yogeshwaran, Arumugam
The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO₂ driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21ˢᵗ century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.
Show more [+] Less [-]Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes (13C and 14C) in Xi'an, China
2022
Niu, Zhenchuan | Huang, Zhipu | Wang, Sen | Feng, Xue | Wu, Shugang | Zhao, Huiyizhe | Lu, Xuefeng
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Show more [+] Less [-]Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd
2022
Chang, Chuanyu | Zhang, Hua | Huang, Fang | Feng, Xinbin
Selenium (Se) plays an indispensable role in minimizing cadmium (Cd) hazards for organisms. However, their potential interactions and co-exposure risk in the naturally Se–Cd enriched paddy field ecosystem are poorly understood. In this study, rice plants with rhizosphere soils sampled from the Enshi seleniferous region, China, were investigated to resolve this confusion. Here, translocation and bioaccumulation of Cd showed some abnormal patterns in the system of soil-rice plants. Roots had the highest bioaccumulation factors of Cd (range: 0.30–57.69; mean: 11.86 ± 14.32), and the biomass of Cd in grains (range: 1.44–127.70 μg, mean: 36.55 ± 36.20 μg) only accounted for ∼10% of the total Cd in whole plants (range: 14.67–1363.20 μg, mean: 381.25 ± 387.57 μg). The elevated soil Cd did not result in the increase of Cd concentrations in rice grains (r² = 0.03, p > 0.05). Most interestingly, the opposite distribution between Se and Cd in rice grains was found (r² = 0.24, p < 0.01), which is contrary to the positive correlation for Se and Cd in soil (r² = 0.46, p < 0.01). It is speculated that higher Se (0.85–11.46 μg/g), higher Se/Cd molar ratios (mean: 5.42 ≫1; range: 1.50–12.87), and higher proportions of reductive Se species (IV, 0) of the Enshi acidic soil may have the stronger capacity of favoring the occurrence of Se binding to Cd ions by forming Cd–Se complexes (Se²⁻ + Cd²⁺ =CdSe) under reduction conditions during flooding, and hence change the Cd translocation from soil to roots. Furthermore, the negative correlation (r² = 0.25, p < 0.05) between the Cd translocation factor (TFwₕₒₗₑ gᵣₐᵢₙₛ/ᵣₒₒₜ) and the roots Se indicates that Cd translocation from the roots to rice grains was suppressed, possibly by the interaction of Se and Cd. This study inevitably poses a challenge for the traditional risk assessment of Cd and Se in the soils-crops-consumers continuum, especially in the seleniferous area.
Show more [+] Less [-]Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes
2022
Wu, Qiqi | Liu, Chengshuai | Wang, Zhengrong | Gao, Ting | Liu, Yuhui | Xia, Yafei | Yin, Runsheng | Qi, Meng
Iron (Fe) is an essential nutrient for living organisms and Fe deficiency is a worldwide problem for the health of both rice and humans. Zinc (Zn) contamination in agricultural soils is frequently observed. Here, we studied Fe isotope compositions and transcript levels of Fe transporter genes in rice growing in nutrient solutions having a range of Zn concentrations. Our results show Zn stress reduces Fe uptake by rice and drives its δ⁵⁶Fe value to that of the nutrient solution. These observations can be explained by the weakened Fe(II) uptake through Strategy I but enhanced Fe(III) uptake through Strategy II due to the competition between Zn and Fe(II) combining with OsIRT1 (Fe(II) transporter) in root, which is supported by the downregulated expression of OsIRT1 and upregulated expression of OsYSL15 (Fe(III) transporter). Using a mass balance box model, we also show excess Zn reduces Fe(II) translocation in phloem and its remobilization from senescent leaf, indicating a competition of binding sites on nicotianamine between Zn and Fe(II). This study provides direct evidence that how Zn regulates Fe uptake and translocation in rice and is of practical significance to design strategies to treat Fe deficiency in rice grown in Zn-contaminated soils.
Show more [+] Less [-]Lipid biomarkers and metal pollution in the Holocene record of Cartagena Bay (SE Spain): Coupled natural and human induced environmental history in Punic and Roman times
2022
Ortiz, José E. | Torres, Trinidad | Sánchez-Palencia, Yolanda | Ros, Milagros | Ramallo, Sebastián | López-Cilla, Ignacio | Galán, Luis A. | Manteca, Ignacio | Rodríguez Estrella, Tomás | Blázquez, Ana | Gómez-Borrego, Ángeles | Ruiz-Zapata, Blanca | Gil, María José
We reconstructed the palaeoenvironmental conditions of Cartagena Bay during the Holocene after a multidisciplinary study to identify natural variations and the anthropic processes of this coastal area. A total of 119 samples were recovered for amino acid racemization dating, 3 for radiocarbon dating (¹⁴C), and four sets of 80 samples for sedimentological and palaeontological determination, mineralogical content, biomarker and trace elements quantification. Two natural scenarios were identified from the variations of n-alkane indices and palaeobiological content. The first period (6650–5750 yr cal BP) was marked by the development of euhaline marine conditions with strong inputs from aquatic macrophytes and high biodiversity. After a hiatus, the area underwent a profound change, becoming a paucispecific brackish marsh environment with increasing inputs from land plants, with possible episodes of emersion with a greater presence from terrestrial gastropods (3600–300 cal yr BP). By combining trace element abundance and stanol distributions, our study also provides a novel approach to identify the predominant influence of anthropogenic factors in the last three millennia in the coastal record of Cartagena Bay. Findings confirmed that Pb mining and metallurgy began during the Bronze Age, with considerable inputs of this heavy metal into the atmosphere during Phoenician, Punic and particularly Roman times compared to the Middle Ages. Pollution by Cu and Zn was also observed during Punic and Roman times, and was first documented in the Middle Ages. In addition, faecal stanols, such as coprostanol, derived mainly from humans, and 24-ethylcoprostanol from herbivores were present, thereby indicating for the first time a continuous presence of human populations and significant pollution input since 3600 yr cal BP, this being greater in the late Bronze Age and Phoenician, Punic and Roman times than during Late Antiquity and the Middle Ages, when the city was in decline.
Show more [+] Less [-]Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach
2022
Williams, Nathan L.R. | Siboni, Nachshon | McLellan, Sandra L. | Potts, Jaimie | Scanes, Peter | Johnson, Colin | James, Melanie | McCann, Vanessa | Seymour, Justin R.
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Show more [+] Less [-]Effects of aging and reduction processes on Cr toxicity to wheat root elongation in Cr(VI) spiked soils
2022
Yang, Yang | Peng, Yemian | Ma, Yibing | Chen, Guojun | Li, Fangbai | Liu, Tongxu
The bioavailability of chromium (Cr) in soils is highly dependent on Cr fractions and soil physicochemical properties, but it is still unclear how the Cr fractions change in different soils. In this study, phytotoxicity to wheat root elongation was evaluated in different soils across China, and the kinetics of the biogeochemical processes of the added Cr(VI) were examined. After 105 days of soil Cr(VI) spiking, the added Cr(VI) causing 10% inhibition (EC₁₀) of wheat root elongation varied greatly in soils (0.92–151.12 mg kg⁻¹). The results of correlation analysis between EC₁₀ and soil properties showed that the toxicity of Cr was affected by pH, organic matter (OM), clay, cation exchange capacity (CEC), and amorphous Fe oxides. Moreover, the correlation analysis showed that wheat root elongation was more sensitive to extracted Cr(VI) than Cr(III) after 105 days of incubation. A kinetic model was established to evaluate the redox and aging-activating reactions of Cr(VI)/(III) over 105 days. The correlation analysis between the soil properties and rate constants of the model showed that the pH, clay, and amorphous Fe/Al oxides might be the key factors controlling the aging and reduction processes of Cr(VI), and the OM and CEC might greatly affect the aging process of Cr(III). This modeling study is helpful in understanding which soil properties control the transformation and toxicity of Cr in soils.
Show more [+] Less [-]Microplastic load and polymer type composition in European rocky intertidal snails: Consistency across locations, wave exposure and years
2022
Ehlers, Sonja M. | Ellrich, Julius A. | Koop, Jochen H.E.
Microplastics (<5 mm) are emerging pollutants in oceans worldwide. As such small particles are easily ingested, microplastics are found in numerous pelagic and benthic organisms. However, information on microplastics in rocky intertidal organisms and habitats is relatively scant. Therefore, we examined snails and water samples from wave-sheltered and wave-exposed rocky intertidal habitats in Helgoland (North Sea), Cap Ferrat and Giglio (Mediterranean) and Madeira (Atlantic Ocean) in 2019–2020 for microplastics. Furthermore, we examined snails from the same habitats in Helgoland, Cap Ferrat and Giglio in 2007–2009. In total, we performed 362 individual micro-Fourier-transform infrared spectroscopy (μFTIR) measurements on the snails and water samples. While the snails contained 50 microplastics (composed of nine polymer types), the water samples contained 24 microplastics (comprising six polymer types). Microplastic load and polymer type composition in the snails were rather similar across locations, wave exposure and years. Also, microplastic load and polymer composition in the water samples were similar across locations and wave exposure. Moreover, snail and water microplastic loads were significantly correlated which indicates that snails are useful bioindicators for microplastic loads in rocky intertidal habitats. Interestingly, the majority of the microplastics consisted of paint chips that likely derived from ships. Overall, our study provides the first comprehensive microplastic record in rocky intertidal organisms across locations, wave exposure and years that can serve as a baseline to examine historic and future microplastic dynamics in rocky intertidal systems.
Show more [+] Less [-]N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil
2022
Zhang, Xi | Zhang, Junqian | Song, Mengxin | Dong, Yubing | Xiong, Zhengqin
Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N₂O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N₂O and NO emissions. However, the aging effects of biochar on soil N₂O and NO production and the relevant mechanisms are not thoroughly understood. A¹⁵N tracing microcosm study was conducted to clarify the responses of N₂O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N₂O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N₂O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N₂O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially lab-aged biochar had no effect on N₂O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N₂O and NO fluxes were closely associated with soil NH₄⁺-N and NO₂⁻-N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N₂O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N₂O and NO mitigation in vegetable soils.
Show more [+] Less [-]Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges
2022
Liu, Yonghua | Chen, Hanqing | Zhu, Nali | Zhang, Jing | Li, Yufeng | Xu, Diandou | Gao, Yuxi | Zhao, Jiating
Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation.
Show more [+] Less [-]