Refine search
Results 1321-1330 of 7,351
β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures Full text
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Show more [+] Less [-]A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota Full text
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Show more [+] Less [-]Effects of nitrogen and phosphorus enrichment on soil N2O emission from natural ecosystems: A global meta-analysis Full text
2022
Shen, Yawen | Zhu, Biao
Nitrogen (N) and phosphorous (P) enrichment play an important role in regulating soil N₂O emission, but their interactive effect remains elusive (i.e. whether the effect of P or N enrichment on soil N₂O emission varies between ambient and elevated soil N or P conditions). Here, we conducted a Bayesian meta-analysis across the global natural ecosystems to determine this effect. Our results showed that P enrichment significantly decreased soil N₂O emission by 13.9% at ambient soil N condition. This N₂O mitigation is likely due to the decreased soil NO₃⁻-N content (−17.6%) derived by the enhanced plant uptake when the P limitation was alleviated by P enrichment. However, this P-induced N₂O (and NO₃⁻-N) mitigation was not found at elevated soil N condition. Additionally, N enrichment significantly increased soil N₂O emission by 101.4%, which was associated with the increased soil NH₄⁺-N (+41.0%) and NO₃⁻-N (+82.3%). However, the effect of N enrichment on soil N₂O emission did not differ between ambient and elevated soil P subgroups, indicating that the P-derived N₂O mitigation could be masked by N enrichment. Further analysis showed that manipulated N rate, soil texture, soil dissolved organic nitrogen, soil total nitrogen, soil organic carbon, soil pH, aboveground plant biomass, belowground plant biomass, and plant biomass nitrogen were the main factors affecting soil N₂O emission under N enrichment. Taken together, our study provides evidence that P enrichment has the potential to reduce soil N₂O emission from natural ecosystems, but this mitigation effect could be masked by N enrichment.
Show more [+] Less [-]Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater Full text
2022
Jayapal, Mohanapriya | Jagadeesan, Hema | Krishnasamy, Vinothkumar | Shanmugam, Gomathi | Muniyappan, Vignesh | Chidambaram, Dinesh | Krishnamurthy, Satheesh
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Show more [+] Less [-]Impact of smelter re-development on spatial and temporal airborne Pb concentrations Full text
2022
Alankarage, Dileepa | Juhasz, Albert L.
Total suspended particulate (TSP) and PM₁₀ filters collected from two ambient air monitoring stations in Port Pirie were analysed to determine the impact of a lead (Pb) smelter redevelopment on air quality parameters including total elemental concentration, Pb isotopic ratio, Pb bioaccessibility and Pb speciation. Filters from 2009 to 2020 were analysed with a focus on samples from 2017 (immediately prior to smelter redevelopment) and 2020 (post-smelter redevelopment). Lead concentration in 2009–2020 TSP was variable ranging up to 6.94 μg m⁻³ (mean = 0.57 μg m⁻³), however, no significant decrease in Pb concentration was observed at either Port Pirie West (p = 0.56, n = 34) or Oliver Street (p = 0.32, n = 28) monitoring stations when 2017 and 2020 TSP values were compared. Similarly, no significant difference (p = 0.42) in PM₁₀ Pb concentration was observed in 2017 (mean = 0.80 μg m⁻³) and 2020 (0.60 μg m⁻³) Oliver Street filters. Although no change in percentage Pb bioaccessibility was observed when 2017 and 2020 Port Pirie West TSP samples were compared (mean of 88.7% versus 88.0%), Pb bioaccessibility was lower (p < 0.005) in both 2020 TSP (mean of 83.9% versus 62.9%) and PM₁₀ (mean of 70.8% versus 58.3%) Oliver Street filters compared to 2017. While scanning electron microscopy, energy dispersive x-ray spectroscopy identified a number of Pb phases within filters (galena, anglesite, cerussite, conglomerates), differences in Pb speciation between 2017 and 2020 filters could not be identified although it was presumed that this influenced Pb bioaccessibility outcomes at Oliver Street. Data from this study suggests that recent smelter redevelopments have not significantly decreased the concentrations of airborne Pb in Port Pirie although re-entrainment of soil-Pb from historical impact may also be a contributing Pb source.
Show more [+] Less [-]Effect of body size, feeding ecology and maternal transfer on mercury accumulation of vulnerable silky shark Carcharhinus falciformis in the eastern tropical pacific Full text
2022
Li, Zezheng | Pethybridge, Heidi R. | Gong, Yi | Wu, Feng | Dai, Xiaojie | Li, Yunkai
The silky shark Carcharhinus falciformis is a large pelagic species distributed in the global oceans and was recently listed as “Vulnerable” by the IUCN because of its decline in population due to overfishing. As an apex predator, the silky shark can accumulate elevated quantities of mercury (Hg), posing a potential risk to its remaining population. In this study, total Hg (THg) concentrations were determined in silky shark muscle, liver, dermis, red blood cells (RBC) and plasma sampled from the eastern tropical Pacific, and δ¹⁵N values were measured to explore the influence of feeding ecology on Hg accumulation. The highest THg concentrations were in muscle (7.81 ± 6.70 μg g⁻¹ dry weight (dw) or 2.14 ± 1.83 μg g⁻¹ wet weight (ww)) and liver (7.88 ± 10.22 μg g⁻¹ dw or 4.66 ± 6.04 μg g⁻¹ ww) rather than dermis, RBC and plasma. The THg concentrations in all tissue types were significantly correlated with fork length and showed faster accumulation rates after maturity. Maternal THg transfer was observed in silky sharks with embryos having 33.16% and 1.98% in muscle and liver compared with their respective mothers. The potentially harmful THg concentrations in silky shark tissues and embryos may lead to health problems of sharks and consumers. THg concentrations were negatively correlated with δ¹⁵N values for all tissues, indicating likely baseline variations in δ¹⁵N values that reflect changes in the foraging habitats or regions of silky sharks with size or age. Lastly, strong correlations were observed among THg concentrations of all tissue types, indicating that nonlethal sampling of muscle and dermis tissue can be used effectively to quantify THg concentration of other internal tissues.
Show more [+] Less [-]Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring Full text
2022
Fernández, Sandra F. | Pardo, Olga | Coscollà, Clara | Yusà, Vicent
Acrylamide (AA) is an organic contaminant that naturally forms in starchy foods during high-temperature cooking under low-moisture conditions. It is mainly produced from the sugars and amino acids present in food by the Maillard reaction. When humans are exposed to AA, AA is eliminated in the urine as mercapturic acid conjugates, primarily including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul), which are used as exposure biomarkers of AA in human biomonitoring studies. Although the carcinogenic effects of AA on humans have not been demonstrated yet, some studies have shown that AA may negatively affect children's health. The main objective of this study was to evaluate the exposure of Spanish children (n = 612) to AA. For this purpose, the levels of AAMA, AAMA-Sul, and GAMA3 in first-morning urine samples were analyzed by “dilute and shoot” and liquid chromatography coupled to tandem mass spectrometry. The three metabolites were detected in all the children involved in this study in the following order (geometric mean (GM)): AAMA (79 ng ml⁻¹) > AAMA-Sul (28 ng ml⁻¹) > GAMA3 (18 ng ml⁻¹). Statistical analysis suggested that the intake of fried potato products and biscuits could be associated with higher levels of AA metabolites in urine. Estimated daily intakes of AA in the children under study were in the range of 1.2–1.5 μg AA·kg-body weight⁻¹·day⁻¹ (GM). Risk assessment calculations indicate that the health risk of AA exposure cannot be overlooked and the exposure of Spanish children to AA should be closely monitored.
Show more [+] Less [-]Characteristics of PM2.5 emissions from six types of commercial cooking in Chinese cities and their health effects Full text
2022
Lyu, Junmeng | Shi, Yongxiang | Chen, Cong | Zhang, Xinqiao | Zhu, Wei | Lian, Zhiwei
Commercial kitchens may pose significant health risks to workers because they generate large quantities of fine particulate matter (PM₂.₅). In our study, the concentrations and emission rates of PM₂.₅ in cooking environments were measured for six types of commercial kitchens that used electricity and natural gas (including traditional Chinese kitchens, western kitchens, teppanyaki kitchens, fried chicken kitchens, barbecue kitchens, and hotpot cooking area). Furthermore, a preliminary health risk assessment of the chefs was undertaken using the annual PM₂.₅ inhalation and PM₂.₅ deposition rates into the upper airways and tracheobronchial and alveolar regions of the human body. Results showed that cooking in the teppanyaki kitchen generated the highest amount of PM₂.₅, with a mean emission rate of 7.7 mg/min and a mean mass concentration of 850.4 ± 533.4 μg/m³ in the breathing zone. Therefore, teppanyaki kitchens pose highest PM₂.₅ exposure risks to chefs, with the highest rate of PM₂.₅ deposition in the upper airways (6.38 × 10⁵ μg/year), followed by Chinese kitchens. The PM₂.₅ concentrations and emission rates of each kitchen varied greatly with the dishes cooked. The mean PM₂.₅ concentration was the highest during Chinese stir-frying, with the peak concentration reaching more than 20,000 μg/m³, followed by pan-frying, deep-frying, stewing, and boiling. A rise in PM₂.₅ concentration was also observed during the start of stir-frying and in the middle to late stages of pan-frying and grilling meat. The results obtained in our study may contribute in understanding the characteristics of PM₂.₅ emissions from various types of commercial kitchens and their health effects.
Show more [+] Less [-]Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale Full text
2022
Fang, Zhen | Zhou, Ling | Liu, Ya | Xiong, Jinpeng | Su, Ya | Lan, Zefeng | Han, Lujia | Huang, Guangqun
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Show more [+] Less [-]Regioselective hydroxylation of carbendazim by mammalian cytochrome P450: A combined experimental and computational study Full text
2022
Lv, Xia | Li, Jing-Xin | Wang, Jia-Yue | Tian, Xiang-Ge | Feng, Lei | Sun, Cheng-Peng | Ning, Jing | Wang, Chao | Zhao, Wen-Yu | Li, Ya-Chen | Ma, Xiao-Chi
Carbendazim (CBZ), a broad-spectrum pesticide frequently detected in fruits and vegetables, could trigger potential toxic risks to mammals. To facilitate the assessment of health risks, this study aimed to characterize the cytochrome P450 (CYPs)-mediated metabolism profiles of CBZ by a combined experimental and computational study. Our results demonstrated that CYPs-mediated region-selective hydroxylation was a major metabolism pathway for CBZ in liver microsomes from various species including rat, mouse, minipig, dog, rabbit, guinea pig, monkey, cow and human, and the metabolite was biosynthesized and well-characterized as 6-OH-CBZ. CYP1A displayed a predominant role in the region-selective hydroxylation of CBZ that could attenuate its toxicity through converting it into a less toxic metabolite. Meanwhile, five other common pesticides including chlorpyrifos-methyl, prochloraz, chlorfenapyr, chlorpyrifos, and chlorothalonil could significantly inhibit the region-selective hydroxylation of CBZ, and consequently remarkably increased CBZ exposure in vivo. Furthermore, computational study clarified the important contribution of the key amino acid residues Ser122, and Asp313 in CYP1A1, as well as Asp320 in CYP1A2 to the hydroxylation of CBZ through hydrogen bonds. These results would provide some useful information for the metabolic profiles of CBZ by mammalian CYPs, and shed new insights into CYP1A-mediated metabolic detoxification of CBZ and its health risk assessment.
Show more [+] Less [-]