Refine search
Results 1341-1350 of 1,535
Copper accumulation, translocation, and toxic effects in grapevine cuttings
2012
Juang, Kai-Wei | Lee, Y.-I. (Yung-I.) | Lai, Hung-Yu | Wang, Chiung-Huei | Chen, Bo-Ching
PURPOSE: Although the ecotoxicological effects of copper (Cu) on grapevine are of global concern due to the intensive and long-term application of Cu-based fungicides in vineyards, comparatively little is known about the phytotoxicity, accumulation, and translocation of Cu in grapevines. Therefore, this study was to conduct a hydroponic experiment to determine the influence of solution Cu concentration not only on bioaccumulation and the translocation of Cu in grapevine roots, stems, and leaves, but also on the subsequent growth inhibition of the roots. METHODS: Grapevine cuttings were grown for 30 days and then exposed to various Cu concentrations (0.1–50 μM) for 15 days. The dose–response profile was described by a sigmoid Hill equation. Optical microscopy was used to examine the cytotoxicity of Cu on the roots. In addition, bioaccumulation factors (BAFs) and translocation factors (TFs) were calculated from the results of the hydroponic experiment. RESULTS: Copper was tolerated by grapevines at a concentration ≤1 μM. The median inhibition concentration (IC50) obtained from the Hill model was 3.94 μM (95% confidence interval, 3.65–4.24). From the light micrographs of root tip cells, signs of toxicity including increased vacuolization and plasmolysis were observed at solution Cu concentrations ≥10 μM. In addition, a higher Cu concentration was found in the roots (25–12,000 mg kg−1) than in the stems (5–540 mg kg−1) and leaves (7–46 mg kg−1), indicating a very limited translocation of Cu from the roots to the aboveground parts. CONCLUSIONS: This study investigated not only the macroscopic root growth and Cu accumulation by grapevine, but also the microscopic changes in root tissue at the cell level after the exposure experiment. Based on the BAFs and TFs, the grapevine could be considered a Cu-exclusive plant. For toxic effects on the exposure of roots to Cu, this study also revealed that root growth, as well as the histological changes in rhizodermal cells, can be used as phytotoxic indicators of grapevine under Cu stress.
Show more [+] Less [-]Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediment from the upper reach of Huaihe River, East China
2012
Feng, Jinglan | Zhai, Mengxiao | Sun, Jianhui | Liu, Qun
INTRODUCTION: To assess the status of polycyclic aromatic hydrocarbons (PAHs) contamination in sediments from the upper reach of Huaihe River, East China, 16 surface sediment samples were collected in March 2007 and analyzed for 16 USEPA priority PAHs. RESULTS AND DISCUSSION: The results indicated that the total concentrations of 16 PAHs (∑PAHs) were 95.2–877.5 μg kg−1 dry weight (dw) with a mean value of 370.8 μg kg−1 dw for the main stream, 85.7–935.2 μg kg−1 dw with a mean concentration of 480.7 μg kg−1 dw for tributaries, and 144.8–303.2 μg kg−1 dw with an average concentration of 224.0 μg kg−1 dw for lakes. PAHs pollution was closely related to sewage input and industrial activities. Furthermore, the distribution of PAHs in sediments from the main stream indicated that the input of tributaries was an important factor for Huaihe River. In comparison to a worldwide survey of sedimentary PAHs concentrations, PAHs pollution in Huaihe River sediments was ranked as low to moderate. The dominant compounds in surface sediment samples were four-ring and five-ring PAH compounds. CONCLUSION: Selected PAH ratios suggested that PAHs mainly came from the contamination of pyrogenic processes, such as coal and biomass combustion. Risk assessment indicated that PAHs in sedimentary environment in the upper reach of Huaihe River may cause mild toxic effects but would not cause immediate biological effects.
Show more [+] Less [-]The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings
2012
Liu, Dongwu | Wang, Xue | Lin, Yousheng | Chen, Zhiwei | Xu, Hongzhi | Wang, Lina
INTRODUCTION: The aims of the present study are to investigate the effects of Ce3+ on the growth and some antioxidant metabolisms in rice seedlings (Oryza sativa L. cv Shengdao 16). MATERIALS AND METHODS: The rice was treated with 0, 0.05, 0.1, 0.5, 1.0, and 1.5 mM Ce3+, respectively. The growth index of rice was measured. The chlorophyll content; catalase, superoxide dismutase, and peroxidase activities; and the level of hydrogen peroxide (H2O2), superoxide anion (O 2 ·− ), and malondialdehyde were assayed. The accumulation of Ce3+ and the uptake of mineral nutrition elements were analyzed with ICP-SF-MS. RESULTS AND DISCUSSION: Hormetic effects of Ce3+ on the growth and some antioxidant metabolisms were found in the roots and shoots of rice. The roots can accumulate a much higher content of Ce3+ than shoots and Ce3+ mainly located in the cell wall of roots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments, which indicated that Ce3+ affected the nutritional status of roots and shoots and further affected the growth of rice. CONCLUSION: The appropriate amount of Ce3+ improved the defense system and growth of rice. The roots can accumulate a much higher content of Ce3+ than shoots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments.
Show more [+] Less [-]Equilibrium, kinetic and thermodynamic studies on the biosorption of reactive acid dye on Enteromorpha flexuosa and Gracilaria corticata
2012
Sivasamy, A. | Nethaji, S. | Nisha, L. L Josmin Lalli
PURPOSE: Biosorption is an emerging, eco-friendly and economical method for treating the wastewater effluents. Compared to many other biological materials, algae biomass proved to be the better biosorbent due to the presence of cell wall polymers in them. METHODS: Algal biomasses namely Enteromorpha flexuosa and Gracilaria corticata were dried, crushed and used as biosorbents. Ponceau S, a diazo dye was used as a model adsorbate for the biosorption studies. The biosorbents were characterized by Scanning Electron Microscopy, FT-IR and zero point charge. Batch studies were performed by varying pH, biosorbent dosage and initial dye concentrations. Adsorption isotherms, kinetic and thermodynamic analyses were carried out. The effect of electrolytes was also studied. Batch desorption studies were also carried out using various reagents. RESULTS: Isotherm data were tested with Langmuir and Freundlich isotherm models and the results suggested that the Freundlich isotherm fitted the data well. Kinetic studies were performed with varying initial dye concentrations and the data were incorporated with pseudo first-order and pseudo second-order kinetic equations and was found that the studied biosorption processes followed pseudo second-order kinetic equation. Thermodynamic parameters were evaluated at three different temperatures 293 K, 300 K and 313 K. About 95% of the dye could be desorbed from both the biosorbents. CONCLUSION: Both the algal biomasses had heterogeneous surfaces and followed pseudo second-order chemical kinetics. Thermodynamic parameters proved that the biosorption by both the biomasses were spontaneous, feasible and endothermic processes. Desorption studies proved the worth of the algal biomasses as biosorbents in industrial level.
Show more [+] Less [-]Effects of perfluorinated compounds on development of zebrafish embryos
2012
Zheng, Xin-Mei | Liu, Hong-Ling | Shi, Wei | Wei, Si | Giesy, John P. | Yu, Hong-Xia
Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC₅₀. Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups.
Show more [+] Less [-]Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium
2012
Naik, Umesh Chandra | Srivastava, Shaili | Thakur, Indu Shekhar
PURPOSE: Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. METHODS: Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. RESULTS: The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. CONCLUSION: Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.
Show more [+] Less [-]Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies
2012
Karthikeyan, S. | Ezhil Priya, M. | Boopathy, R. | Velan, M. | Mandal, A. B. | Sekaran, G.
BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. MATERIALS AND METHODS: Ferrous sulfate (FeSO4·7H2O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. RESULTS AND DISCUSSION: The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van’t Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV–visible spectroscopy, and cyclic voltammetry. CONCLUSIONS: The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time–4 h, and H2O2/FeSO4·7H2O in the molar ratio of 2:1.
Show more [+] Less [-]Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium
2012
Mukherjee, Ashis K. | Bordoloi, Naba K.
PURPOSE: The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition. MATERIALS AND METHODS: The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120 h in BTX-containing liquid culture and for 90 days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique. RESULTS: Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01 % (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90 days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene. CONCLUSIONS: It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.
Show more [+] Less [-]Evaluation of environmental magnetic pollution screening in soils of basaltic origin: results from Nashik Thermal Power Station, Maharashtra, India
2012
Basavaiah, N. | Blaha, U. | Das, P. K. | Deenadayalan, K. | Sadashiv, M. B. | Schulz, H.
BACKGROUND, AIM, AND SCOPE: Soils of basaltic origin cause difficulties in environmental magnetic screening for heavy metal pollution due to their natural high background values. Magnetic parameters and heavy metal content of highly magnetic topsoils from the Deccan Trap basalts are investigated to assess their potential for use in environmental magnetic pollution screening. This work extends the fast and cost-effective magnetic pollution screening techniques into soils with high natural magnetic signals. MATERIALS AND METHODS: Fifty-five topsoil samples from N–S and W–E transects were collected and subdivided according to grain size using wet sieving technique. Magnetic susceptibility, soft isothermal remanent magnetization (Soft IRM), thermomagnetic analysis, scanning electron microscopy (SEM), and heavy metal analysis were performed on the samples. RESULTS: Magnetic analyses reveal a significant input of anthropogenic magnetic particulate matter within 6 km of the power plant and the adjacent ash pond. Results depend strongly on the stage of soil development and vary spatially. While results in the W, E, and S directions are easily interpretable, in the N direction, the contribution of the anthropogenic magnetic matter is difficult to assess due to high magnetic background values, less developed soils, and a more limited contribution from the fly ash sources. Prevailing winds towards directions with more enhanced values seem to have a certain effect on particulate matter accumulation in the topsoil. Thermomagnetic measurements show Verwey transition and Hopkinson peak, thus proving the presence of ferrimagnetic mineral phases close to the pollution source. A quantitative decrease of the anthropogenic ferrimagnetic mineral concentration with increased distance is evident in Soft IRM measurements. SEM investigations of quantitatively extracted magnetic particles confirm the fly ash distribution pattern obtained from the magnetic and heavy metal analyses. Evaluation of magnetic and chemical data in concert with the Pollution Load IndiceS (PLIS) of Pb, Zn, and Cu reveals a good relationship between magnetic susceptibility and the metal content. CONCLUSIONS: Integrated approaches in data acquisition of magnetic and chemical parameters enable the application of magnetic screening methods in highly magnetic soils. Combined data evaluation allows identification of sampling sites that are affected by human activity, through the deviation of the magnetic and chemical data from the general trend. It is shown that integrative analysis of magnetic parameters and a limited metal concentration dataset can enhance the quality of the output of environmental magnetic pollution screening significantly.
Show more [+] Less [-]Characterization of PM10 atmospheric aerosol at urban and urban background sites in Fuzhou city, China
2012
Xu, Lingling | Chen, Xiaoqiu | Chen, Jinsheng | Zhang, Fuwang | He, Chi | Du, Ke | Wang, Yang
BACKGROUND: PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined. METHODS: Water-soluble inorganic ions (Cl−, NO 3 − , SO 4 2− , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively. RESULTS: PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2− , NO 3 − , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9–97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area. CONCLUSION: According to the principal component analysis–multivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.
Show more [+] Less [-]