Refine search
Results 1341-1350 of 5,153
Cadmium stabilization via silicates formation: Efficiency, reaction routes and leaching behavior of products Full text
2018
Su, Minhua | Tang, Jinfeng | Liao, Changzhong | Kong, Lingjun | Xiao, Tangfu | Shih, Kaimin | Song, Gang | Chen, Diyun | Zhang, Hongguo
Stabilizing cadmium by incorporating it into crystalline products is an effective approach to detoxify cadmium-containing wastes. In this study, two Si-rich matrices in amorphous and crystalline forms (i.e., silica fume and α-quartz, respectively) were employed to incorporate Cd. The processing parameters, namely the type of Si-rich matrix, Cd/Si molar ratio (Г) and sintering temperature, were thoroughly investigated using quantitative X-ray diffraction technique. Cd incorporation was more energetically favored when silica fume was used rather than when α-quartz was used because of the lower Gibbs free energy of formation for silica fume. The sintering temperature and Г values substantially affected the formation of three cadmium silicates, namely monoclinic CdSiO₃, orthorhombic Cd₂SiO₄, and tetragonal Cd₃SiO₅. CdSiO₃ formed only in Г = 1.0 systems. Cd₂SiO₄ was dominant in all reactive systems. In Г = 3.0 systems, Cd₃SiO₅ rather than Cd₂SiO₄ was the predominant Cd-hosting product at temperatures above 850 °C. Leaching test results demonstrated that CdSiO₃ possessed the highest acid resistance among the cadmium silicates. The leachability of Cd₂SiO₄ was very similar to that of Cd₃SiO₅. CdSiO₃ preferred incongruent dissolution, whereas Cd₂SiO₄ and Cd₃SiO₅ favored near-congruent dissolution. This study delineated the feasibility of cadmium incorporation by Si-rich matrices, identifying a promising approach for cadmium detoxification.
Show more [+] Less [-]Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus Full text
2018
Zhu, Bo-Kai | Fang, Yi-Meng | Zhu, Dong | Christie, Peter | Ke, Xin | Zhu, Yong-Guan
Microplastics are emerging pollutants that have recently aroused considerable concern but most toxicological studies have focused on marine biota, with little investigation of the influence of microplastics on terrestrial ecosystems. Here, we fed the soil oligochaete Enchytraeus crypticus with oatmeal containing 0, 0.025, 0.5, and 10% (dry weight basis) nano-polystyrene (0.05–0.1 μm particle size) to elucidate the impact of microplastics on the growth and gut microbiome of Enchytraeus crypticus. We observed a significant reduction of weight in the animals fed 10% polystyrene and an increase in the reproduction of those fed 0.025%. More importantly, using 16S rRNA amplification and high-throughput sequencing we found a significant shift in the microbiome of those fed 10% microplastics with significant decreases in the relative abundance of the families Rhizobiaceae, Xanthobacteraceae and Isosphaeraceae. These families contain key microbes that contribute to nitrogen cycling and organic matter decomposition.
Show more [+] Less [-]Uranium toxicity to aquatic invertebrates: A laboratory assay Full text
2018
Bergmann, Melissa | Sobral, Olimpia | Pratas, João | Graça, Manuel A.S.
Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L⁻¹) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 μg L⁻¹) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC₅₀-96-h for Proasellus sp and T. fluviatilis were 142 mg L⁻¹ and 24 mg L⁻¹, respectively. Specimens of S. festiva exposed to 25 μg L⁻¹ had 47% reduced growth compared with specimens under control conditions (21.5 ± 2.9 vs. 40.6 ± 4.9 μg of mass increase animal⁻¹·day⁻¹). Respiration rates (0.40 ± 0.03 μg O₂·h⁻¹·mg animal⁻¹) and consumption rates (0.54 ± 0.05 μg μg animal⁻¹·day⁻¹; means ± SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.
Show more [+] Less [-]Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation Full text
2018
Qian, Xiaoli | Wu, Yonggui | Zhou, Hongyun | Xu, Xiaohang | Xu, Zhidong | Shang, Lihai | Qiu, Guangle
Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg]ᵣₒₒₜ/[THg]ₛₒᵢₗ, [MMHg]ᵣₒₒₜ/[MMHg]ₛₒᵢₗ) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076–140 μg/g THg and 0.19–87 ng/g MMHg in roots, 0.19–106 μg/g THg and 0.06–31 ng/g MMHg in shoots, and 0.74–1440 μg/g THg and 0.41–820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils.
Show more [+] Less [-]Spatiotemporal variability of polybrominated diphenyl ether concentration in atmospheric fine particles in Shenzhen, China Full text
2018
Peng, Jinling | Wu, Dongting | Jiang, Yousheng | Zhang, Jianqing | Lin, Xiaoshi | Lu, Shaoyou | Han, Pengpeng | Zhou, Jian | Li, Shengnong | Lei, Yixiong | Chen, Jinsong
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants for various products and have become ubiquitous pollutants in environmental media. However, little is known about PBDE levels in Shenzhen, a manufacturing center of electronic products. This study aimed to investigate spatiotemporal variability of PBDE concentration in atmospheric fine particles (PM2.5) and to estimate the daily inhalation exposure doses for local residents in Shenzhen, China. A total of 36 samples were collected and 8 PBDE compounds (BDE-28, 47, 99, 100, 153, 154, 183 and 209) were analyzed by isotope dilution high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS). Mean concentrations of Σ8PBDEs and BDE-209 in PM2.5 in Shenzhen were 33.47 pg/m3 and 24.75 pg/m3, respectively, which were lower than those for other reported cities from China. The mean concentration of Σ8PBDEs was higher in the winter + spring than that in summer + autumn, and both concentrations of BDE-28 and BDE-47 in PM2.5 were significantly higher in winter + spring than those in summer + autumn. Among the 8 congeners, BDE-209 was predominant, accounting for 73.9% of the Σ8PBDEs concentrations. Traffic area, industrial area, residential area and discharge of electronic industries had significant positive influences on PBDE concentrations in PM2.5. Both vegetation area and water area were significantly negatively correlated with PBDE levels in PM2.5. Significantly negative correlation was also found between PBDE concentrations in PM2.5 and the relative humidity. The ranking of estimated inhalation exposure doses of PBDEs via PM2.5 inhalation were toddlers (1.74 pg/kg b.w./day) > children (1.33 pg/kg b.w./day) > adults (1.26 pg/kg b.w./day) > teenagers (0.64 pg/kg b.w./day), and toddlers had a highest risk to expose to PBDEs by PM2.5. To our knowledge, the present study is the first to reveal the spatiotemporal variability of PBDEs in PM2.5 of Shenzhen, China.
Show more [+] Less [-]Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid Full text
2018
Ding, Tengda | Lin, Kunde | Bao, Lianjun | Yang, Mengting | Li, Juying | Yang, Bo | Gan, Jay
Triclosan is one of the most frequently detected emerging contaminants in aquatic environment. In this study, we investigated the biouptake, toxicity and biotransformation of triclosan in freshwater algae Cymbella sp. The influence of humic acid, as a representative of dissolved organic matter, was also explored. Results from this study showed that triclosan was toxic to Cymbella sp. with 72 h EC₅₀ of 324.9 μg L⁻¹. Humic acid significantly reduced the toxicity and accumulation of triclosan in Cymbella sp. SEM analysis showed that Cymbella sp. were enormously damaged under 1 mg L⁻¹ triclosan exposure and repaired after the addition of 20 mg L⁻¹ humic acid. Triclosan can be significantly taken up by Cymbella sp. The toxicity of triclosan is related to bioaccumulated triclosan as the algal cell numbers decreased when intracellular triclosan increased. A total of 11 metabolites were identified in diatom cells and degradation pathways are proposed. Hydroxylation, methylation, dechlorination, amino acids conjunction and glucuronidation contributed to the transformative reactions of triclosan in Cymbella sp., producing biologically active products (e.g., methyl triclosan) and conjugation products (e.g., glucuronide or oxaloacetic acid conjugated triclosan), which may be included in the detoxification mechanism of triclosan.
Show more [+] Less [-]Magnetic susceptibility of spider webs as a proxy of airborne metal pollution Full text
2018
Rachwał, Marzena | Rybak, Justyna | Rogula-Kozłowska, Wioletta
The purpose of this pilot study was to test spider webs as a fast tool for magnetic biomonitoring of air pollution. The study involved the investigation of webs made by four types of spiders: Pholcus phalangioides (Pholcidae), Eratigena atrica and Agelena labirynthica (Agelenidae) and Linyphia triangularis (Linyphiidae). These webs were obtained from outdoor and indoor study sites. Compared to the clean reference webs, an increase was observed in the values of magnetic susceptibility in the webs sampled from both indoor and outdoor sites, which indicates contamination by anthropogenically produced pollution particles that contain ferrimagnetic iron minerals. This pilot study has demonstrated that spider webs are able to capture particulate matter in a manner that is equivalent to flora-based bioindicators applied to date (such as mosses, lichens, leaves). They also have additional advantages; for example, they can be generated in isolated clean habitats, and exposure can be monitored in indoor and outdoor locations, at any height and for any period of time. Moreover, webs are ubiquitous in an anthropogenic, heavily polluted environment, and they can be exposed throughout the year. As spider webs accumulate pollutants to which humans are exposed, they become a reliable source of information about the quality of the environment. Therefore, spider webs are recommended for magnetic biomonitoring of airborne pollution and for the assessment of the environment because they are non-destructive, low-cost, sensitive and efficient.
Show more [+] Less [-]Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion Full text
2018
Yan, Zhenhua | Yang, Haohan | Dong, Huike | Ma, Binni | Sun, Hongwei | Pan, Ting | Jiang, Runren | Zhou, Ranran | Shen, Jie | Liu, Jianchao | Lü, Guanghua
Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects.
Show more [+] Less [-]Defective magnesium ferrite nano-platelets for the adsorption of As(V): The role of surface hydroxyl groups Full text
2018
Wu, Can | Tu, Jingwei | Tian, Chen | Geng, Junjie | Lin, Zhang | Dang, Zhi
In this work, magnesium ferrite (MgFe₂O₄) nano-platelets with rich defects and abundant surface hydroxyl groups were synthesized, and used for the removal of low concentration As(V) in aqueous solution. Results from scanning electron microscopy (SEM) showed that the as-synthesized MgFe₂O₄ nano-platelets were consisted of many individual nanospheres. Rietveld refinement of X-ray diffraction (XRD) data indicated that the Mg²⁺ ions substituted the Fe³⁺ ions at both the octahedral and the tetrahedral sites of the crystal structure. Batch adsorption experiment showed that the equilibrium concentration of As(V) could be reduced down to 4.9 μg·L⁻¹ when the initial concentration of As(V) is 1 mg·L⁻¹, which complied with the drinking water standard of WHO (10 μg·L⁻¹). The adsorption capacity of synthesized MgFe₂O₄ towards As(V) was higher than commonly used iron oxide adsorbents (Fe₃O₄, γ-Fe₂O₃ and α-Fe₂O₃). Mechanistic studies proved that the superior adsorption capacity was attributed to: (1) increased amount of surface hydroxyl groups that resulted from the surface defects. (2) formation of tridentate hexanuclear surface complexes instead of bidentate binuclear complexes, and (3) formation of excess Mg-OH surface hydroxyl groups and As-Mg monodentate mononuclear surface complexes. This work disclosed the correlation of the superior As(V) adsorption ability with the surface hydroxyl groups in defective MgFe₂O₄, and propose MgFe₂O₄ as a potential candidate for the remediation of As-contaminated water.
Show more [+] Less [-]Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4 Full text
2018
Shi, Kaixiang | Wang, Qian | Fan, Xia | Wang, Gejiao
A heterotrophic arsenite [As(III)]-oxidizing bacterium Agrobacterium tumefaciens GW4 isolated from As(III)-rich groundwater sediment showed high As(III) resistance and could oxidize As(III) to As(V). The As(III) oxidation could generate energy and enhance growth, and AioR was the regulator for As(III) oxidase. To determine the related metabolic pathways mediated by As(III) oxidation and whether AioR regulated other cellular responses to As(III), isobaric tags for relative and absolute quantitation (iTRAQ) was performed in four treatments, GW4 (+AsIII)/GW4 (-AsIII), GW4-ΔaioR (+AsIII)/GW4-ΔaioR (-AsIII), GW4-ΔaioR (-AsIII)/GW4 (-AsIII) and GW4-ΔaioR (+AsIII)/GW4 (+AsIII). A total of 41, 71, 82 and 168 differentially expressed proteins were identified, respectively. Using electrophoretic mobility shift assay (EMSA) and qRT-PCR, 12 genes/operons were found to interact with AioR. These results indicate that As(III) oxidation alters several cellular processes related to arsenite, such as As resistance (ars operon), phosphate (Pi) metabolism (pst/pho system), TCA cycle, cell wall/membrane, amino acid metabolism and motility/chemotaxis. In the wild type with As(III), TCA cycle flow is perturbed, and As(III) oxidation and fermentation are the main energy resources. However, when strain GW4-ΔaioR lost the ability of As(III) oxidation, the TCA cycle is the main way to generate energy. A regulatory cellular network controlled by AioR is constructed and shows that AioR is the main regulator for As(III) oxidation, besides, several other functions related to As(III) are regulated by AioR in parallel.
Show more [+] Less [-]