Refine search
Results 1341-1350 of 4,938
Metal pollution in surface sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil): Toxic effects on marine organisms Full text
2019
Vezzone, Mariana | Cesar, Ricardo | Moledo de Souza Abessa, Denis | Serrano, Aline | Lourenço, Rodrigo | Castilhos, Zuleica | Rodrigues, Ana Paula | Perina, Fernando Cesar | Polivanov, Helena
The Rodrigo de Freitas Lagoon (RFL - Rio de Janeiro, RJ, Brazil) is a highly polluted and eutrophic lacustrine system, which has been often used for the practice of aquatic sports, including during the 2016 Summer Olympic Games. This study proposes the evaluation of metal concentrations in surface sediments from the RFL before and after urban interventions performed for the 2016 Olympics, as well as their toxicity to the benthic amphipod Tiburonella viscana and embryos of the sea-urchin Echinometra lucunter. Metal concentrations determined in 2017 were significantly higher than those obtained in 2015 (especially Cu, Cd and Ni), suggesting that the interventions performed to fulfill the requirements of the Olympics increased metal contents in sediments. The sediments from the northern sector of the RFL were muddier, more organically enriched, exhibited higher metal concentrations and were more toxic to T. viscana when compared to the sediments collected in the southern sector. This fact is particularly important since the practice of sports, including during the 2016 Olympics, has been preferably performed in the northern sector. Metal distribution was strongly correlated with organic matter and mud contents. The toxicity to E. lucunter embryos was high for both northern and southern sediments; most of the samples led to 100% lack or abnormal embryonic development. The integration of physical, chemical and ecotoxicological data indicates that the mortality to T. viscana was correlated with metal contents, whereas the toxicity to E. lucunter was apparently related to the release of ammonia from the sediment to water column. Finally, high metal concentrations and the toxicity to aquatic organisms evidence the ecological risks to the biota from RFL.
Show more [+] Less [-]Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances Full text
2019
Brusseau, Mark L.
Per- and poly-fluoroalkyl substances (PFAS) have attracted considerable concern due to their widespread occurrence in the environment and potential human health risks. Given the complexity of PFAS retention in multi-phase systems, it would be useful for characterization and modeling purposes to be able to readily determine the relative significance of the individual retention processes for a given PFAS and set of subsurface conditions. A quantitative-structure/property-relationship (QSPR) analysis was conducted for adsorption of PFAS by soils, sediments, and granular activated carbon (GAC), and integrated with a prior analysis conducted for adsorption to air-water and oil-water interfaces. The results demonstrated that a model employing molar volume provided reasonable predictions of organic-carbon normalized soil/sediment adsorption coefficients (log Kₒc), GAC-adsorption coefficients (log Kd), and air/oil-water interfacial adsorption coefficients (log Kᵢ) for PFAS. The relative magnitudes of solid-water and air/oil-water interfacial adsorption were compared as a function of controlling variables. A nomograph was developed that provides a first-order determination of the relative significance of these interfacial adsorption processes in multi-phase porous-media systems.
Show more [+] Less [-]Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective Full text
2019
Ye, Xiaoqing | Liu, Jing
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Show more [+] Less [-]Variations of phthalate exposure and metabolism over three trimesters Full text
2019
Li, Jiufeng | Xia, Wei | Wu, Chuansha | Zhao, Hongzhi | Zhou, Yanqiu | Wei, Juntong | Ji, Fenfen | Luan, Hemi | Xu, Shunqing | Cai, Zongwei
Maternal exposure to phthalates may cause some adverse health effects on both mother and fetus, but variations of phthalate exposure and metabolism during pregnancy have not been thoroughly characterized. A total of 946 participants were selected from a cohort study conducted in Wuhan between 2014 and 2015 through which they had provided a complete set of urine samples at three trimesters. Eight phthalate metabolites were analyzed in 2838 urine samples. Based on urinary concentrations, various parameters (i.e. phthalate metabolite concentrations, ratios of metabolites of bis(2-ethylhexyl) phthalate (DEHP) in DEHP, and percentages of individual metabolites in total phthalates) were compared over three visits. We observed that levels of phthalate metabolites showed a U-shaped trend across three trimesters. The significant variations in the ratios of DEHP metabolites indicated that the efficiency in metabolizing DEHP declined during pregnancy and less recent exposure occurred in mid-pregnancy. The changes of percentages of individual compound in total phthalates suggested the inconsistent pattern over trimesters. This longitudinal study found that the exposure pattern, exposure timing and metabolic susceptibility varied by trimesters, which suggests that urine samples should be collected at multiple time points and mothers should be especially careful in the early pregnancy.
Show more [+] Less [-]Betel quid containing safrole enhances metabolic activation of tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) Full text
2019
Tsou, Han-Hsing | Ko, Hsiao-Tung | Chen, Chia-Tzu | Wang, Tse-Wen | Lee, Chien-Hung | Liu, Tsung-Yun | Wang, Hsiang-Tsui
Cigarette smoking (CS) and betel quid (BQ) chewing are two known risk factors that have synergistic potential for the enhancing the development of oral squamous cell carcinoma (OSCC) in Taiwan. Most mutagens and carcinogens are metabolically activated by cytochrome P450 (CYP450) to exert their mutagenicity or carcinogenicity. Previous studies have shown that metabolic activation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2A6 activity determines NNK-induced carcinogenesis. In addition, safrole affects cytochrome P450 activity in rodents. However, the effect of BQ safrole on the metabolism of tobacco-specific NNK and its carcinogenicity remains elusive. This study demonstrates that safrole (1 mg/kg/d) induced CYP2A6 activity, reduced urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels, and increased NNK-induced DNA damage, including N7-methylguanine, 8-OH-deoxyguanosine and DNA strand breaks in a Syrian golden hamster model. Furthermore, altered NNK metabolism and increased NNK-induced DNA damage were also observed in healthy subjects with CS and BQ chewing histories compared to healthy subjects with CS histories. In conclusion, BQ containing safrole induced tobacco-specific NNK metabolic activation, resulting in higher NNK-induced genotoxicity. This study provides valuable insight into the synergistic mechanisms of CS- and BQ-induced OSCC.
Show more [+] Less [-]Characteristics of biological particulate matters at urban and rural sites in the North China Plain Full text
2019
Shen, Fangxia | Zheng, Yunhao | Niu, Mutong | Zhou, Feng | Wu, Yan | Wang, Junxia | Zhu, Tong | Wu, Yusheng | Wu, Zhijun | Hu, Min | Zhu, Tianle
Depending on their concentrations, sizes, and types, particulate matters of biological origins (bioPM) significantly affect human health. However, for different air environments, they are not well characterized and can vary considerably. As an example, we investigated the bioPM differences at an urban (Beijing) site and a rural (Wangdu) site in the North China Plain (NCP) using an online monitoring instrument, an ultraviolet aerodynamic particle sizer (UV-APS), the limulus amebocyte lysate (LAL) assay, and a high-throughput sequencing method. Generally, lower concentrations of viable bioPM (hourly mean: 1.3 × 10³ ± 1.6 × 10³ m⁻³) and endotoxin (0.66 ± 0.16 EU/m³) in Beijing were observed compared to viable bioPM (0.79 × 10⁵ ± 1.4 × 10⁵ m⁻³) and endotoxin (15.1 ± 23.96 EU/m³) at the Wangdu site. The percentage of viable bioPM number concentration in the total PM was 3.1% in Beijing and 6.4% in Wangdu. Approximately 80% of viable bioPM was found to be in the range from 1 to 2.5 μm. Nevertheless, the size distribution patterns for viable bioPM at the Beijing and Wangdu sites differed and were affected by PM pollution, leading to distinct lung deposition profiles. Moreover, the distinct diurnal variations in viable bioPM on clean days were dimmed by the PM pollution at both sites. Distinct bacterial community structures were found in the air from the Beijing and Wangdu sites. The bacterial community in urban Beijing was dominated by genus Lactococcus (49.5%) and Pseudomonas (15.1%), while the rural Wangdu site was dominated by Enterococcus (65%) and Paenibacillus (10%). Human-derived genera, including Myroides, Streptococcus, Propionibacterium, Dietzia, Helcococcus, and Facklamia, were higher in Beijing, suggesting bacterial emission from humans in the urban air environment. Our results show that different air harbors different biological species, and people residing in different environments thus could have very different biological particle exposure.
Show more [+] Less [-]In utero exposure to bisphenol A disrupts fetal testis development in rats Full text
2019
Lv, Yao | Li, Lili | Fang, Yinghui | Chen, Panpan | Wu, Siwen | Chen, Xiuxiu | Ni, Chaobo | Zhu, Qiqi | Huang, Tongliang | Lian, Qingquan | Ge, Ren-Shan
Bisphenol A (BPA) is widely used in consumer products and is a potential endocrine disruptor linked with abnormal development of male reproductive tract. However, its action and its effects on the pathways in the development of male gonad are still unclear. Here we report that effects of BPA exposure during gestation on male gonad development. Sprague-Dawley rats were gavaged daily with BPA (0, 4, 40, and 400 mg/kg body weight) from gestational day 12 to day 21. BPA dose-dependently decreased serum testosterone levels (0.45 ± 0.08 ng/ml and 0.32 ± 0.08 ng/ml for 40 and 400 mg/kg BPA, respectively) versus the control level (1.11 ± 0.22 ng/ml, Mean ± SE). BPA lowered Leydig cell Insl3 and Hsd17b3 mRNA and their protein levels at doses of 40 and 400 mg/kg. BPA also lowered Leydig cell (Lhcgr, Cyp11a1, and Cyp17a1) and Sertoli cell (Amh) mRNA and their protein levels at 400 mg/kg. BPA decreased fetal Leydig cell number via inhibiting their proliferation, but it did not affect fetal Sertoli cell number. In conclusion, the current study shows that in utero exposure to BPA inhibits fetal Leydig and Sertoli cell differentiation, possibly disrupting the development of male reproductive tract.
Show more [+] Less [-]Proliferation of antibiotic resistance genes in coastal recirculating mariculture system Full text
2019
Wang, Jian-hua | Lu, Jian | Wu, Jun | Zhang, Yuxuan | Zhang, Cui
The abuse of antibiotics has caused the propagation of antibiotic resistance genes (ARGs) in aquaculture systems. Although the recirculating systems have been considered as a promising approach for preventing the coastal water pollution of antibiotics and ARG, rare information is available on the distribution and proliferation of ARGs in the recirculating mariculture system. This study firstly investigated the proliferation of ARGs in coastal recirculating mariculture systems. Ten subtypes of ARGs including tet (tetB, tetG, tetX), sul (sul1, sul2), qnr (qnrA, qnrB, qnrS), and erm (ermF, ermT) were detected. The absolute abundances of the ARGs detected in the mariculture farm were more than 1 × 10⁴ copies/mL. The sulfonamide resistance genes (sul1 and sul2) were the most abundant ARGs with the abundance of 3.5 × 10⁷–6.5 × 10¹⁰ copies/mL. No obvious correlation existed between the antibiotics and ARGs. Some bacteria were positively correlated with two or more ARGs to indicate the occurrence of multidrug resistance. The fluidized-bed biofilter for wastewater treatment in the recirculating system was the main breeding ground for ARGs while the UV sterilization process could reduce the ARGs. The highest flux of ARGs (6.5 × 10²¹ copies/d) indicated that the discharge of feces and residual baits was the main gateway for ARGs in the recirculating mariculture system to enter the environments.
Show more [+] Less [-]Toxicological effects of As (V) in juvenile rockfish Sebastes schlegelii by a combined metabolomic and proteomic approach Full text
2019
Xu, Lanlan | Lu, Zhen | Ji, Chenglong | Cong, Ming | Li, Fei | Shan, Xiujuan | Wu, Huifeng
Arsenic (As) is a metalloid element that is ubiquitous in the marine environment and its contamination has received worldwide attention due to its potential toxicity. Arsenic can induce multiple adverse effects, such as lipid metabolism disorder, immune system dysfunction, oxidative stress and carcinogenesis, in animals. Inorganic arsenic includes two chemical forms, arsenite (As (III)) and arsenate (As (V)), in natural environment. As (V) is the dominant form in natural waters. In the present study, metabolomic and proteomic alterations were investigated in juvenile rockfish Sebastes schlegelii exposed to environmentally relevant concentrations of As (V) for 14 d. The analysis of iTRAQ-based proteomics combined with untargeted NMR-based metabolomics indicated apparent toxicological effects induced by As (V) in juvenile rockfish. In details, the metabolites, including lactate, alanine, ATP, inosine and phosphocholine were significantly altered in As-treated groups. Proteomic responses suggested that As (V) could not only affected energy and primary metabolisms and signal transduction, but also influenced cytoskeleton structure in juvenile rockfish. This work suggested that the combined proteomic and metabolomic approach could shed light on the toxicological effects of pollutants in rockfish S. schlegelii.
Show more [+] Less [-]Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds Full text
2019
Chang, Bea-Ven | Chang, Yi-Tang | Chao, Wei-Liang | Yeh, Shinn-Lih | Kuo, Dong-Lin | Yang, Chu-Wen
Intensive farming practices are typically used for aquaculture. To prevent disease outbreaks, antibiotics are often used to reduce pathogenic bacteria in aquaculture animals. However, the effects of antibiotics on water quality and microbial communities in euryhaline fish culture ponds are largely unknown. The aim of this study was to investigate the interactions between sulfamethoxazole (SMX), water quality and microbial communities in milkfish (Chanos chanos) culture ponds. The results of small-scale milkfish pond experiments indicated that the addition of SMX decreased the abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and photosynthetic bacteria. Consequently, the levels of ammonia and total phosphorus in the fish pond water increased, causing algal and cyanobacterial blooms to occur. In contrast, the addition of the SMX-degrading bacterial strains A12 and L effectively degraded SMX and reduced the levels of ammonia and total phosphorus in fish pond water. Furthermore, the abundances of AOB, NOB and photosynthetic bacteria were restored, and algal and cyanobacterial blooms were inhibited. This study demonstrate the influences of SMX on water quality and microbial community composition in milkfish culture ponds. Moreover, the use of the bacterial strains A12 and L as dual function (bioaugmentation and water quality maintenance) beneficial bacteria was shown to provide an effective approach for the bioremediation of SMX-contaminated euryhaline milkfish culture ponds.
Show more [+] Less [-]