Refine search
Results 1341-1350 of 8,088
Ionic liquid-biosurfactant blends as effective dispersants for oil spills: Effect of carbon chain length and degree of saturation Full text
2021
Hassan Shah, Mansoor Ul | Bhaskar Reddy, Ambavaram Vijaya | Suzana Yusup, | Goto, Masahiro | Moniruzzaman, Muhammad
The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) biosurfactant individually with choline myristate and choline oleate ionic liquid surfactants. The aggregation behavior of resulted surfactant blends and their dispersion effectiveness was investigated using the baffled flask test. The introduction of long hydrophobic alkyl chain with unsaturation (attached to choline cation) provided synergistic interactions between the binary surfactant mixtures. The maximum dispersion effectiveness was found to be 78.23% for 80:20 (w/w) lactonic sophorolipid-choline myristate blends, and 81.15% for 70:30 (w/w) lactonic sophorolipid-choline oleate blends at the dispersant-to-oil ratio of 1:25 (v/v). The high dispersion effectiveness of lactonic sophorolipid-choline oleate between two developed blends is attributed to the stronger synergistic interactions between surfactants and slower desorption rate of blend from oil-water interface. The distribution of dispersed oil droplets at several DOR were evaluated and it was observed that oil droplets become smaller with increasing DOR. In addition, the acute toxicity analysis of developed formulations against zebra fish (Danio rerio) confirmed their non-toxic behavior with LC₅₀ values higher than 400 ppm after 96 h. Overall, the proposed new blends/formulations could effectively substitute the toxic and unsafe chemical dispersants.
Show more [+] Less [-]Serum bisphenol A analogues in women diagnosed with the polycystic ovary syndrome – is there an association? Full text
2021
Jurewicz, Joanna | Majewska, Joanna | Berg, Andrzej | Owczarek, Katarzyna | Zajdel, Radosław | Kaleta, Dorota | Wąsik, Andrzej | Rachoń, Dominik
Due to the endocrine disrupting effects of bisphenol A (BPA) several governmental authorities have banned its use and the manufacturers had to find alternative substances with similar chemical properties. This led to the increase in the use of so-called BPA analogues, which however also turn out to possess mild estrogenic and ani-androgenic properties and thus, may cause fertility problems and sex-hormone dependent endocrinopathies. The aim of this study was to evaluate the potential association between the exposure to BPA and its two analogues: BPS and BPF, with the diagnosis of the polycystic ovary syndrome (PCOS), which remains the most common female endocrinopathy. Serum concentrations of BPA, BPS and BPF were measured using high performance liquid chromatography method with tandem mass spectrometry (HPLC-MS/MS) among 199 women with PCOS and 158 control subjects. In women with PCOS serum BPS concentrations were significantly higher compared to the control subjects (geometric mean [95% CI]: 0.14 ng/mL [0.10; 1.17] vs. 0.08 ng/mL [0.06; 0.09], P = 0.023). Serum BPA and BPF concentrations did not differ between the studied groups. There was however a negative correlation between serum BPA and HOMA-IR (r = − 0.233, P = 0.001) and TST (r = − 0.203, P = 0.006) in women with PCOS. No correlations were found between the serum BPs and other metabolic parameters such as serum lipids, insulin, DHEA-S, androstenedione and FAI. When studying the association between serum BPA analogues and PCOS it turned out that women whose serum BPS concentrations were in the first tertile were more likely to be diagnosed with this endocrinopathy (OR [95% CI]: 1.21 [1.04; 3.46], P = 0.017). This association was also statistically significant when adjusted for age, education, BMI, smoking, income, and alcohol consumption (adjusted OR [95% CI]: 1.12 [1.03; 3.71], P = 0.029). These results point to the potential association between the exposure to BPS and the diagnosis of PCOS. The role of BPA is not clear and warrants further studies.
Show more [+] Less [-]Bisphenol AF induces apoptosis via estrogen receptor beta (ERβ) and ROS-ASK1-JNK MAPK pathway in human granulosa cell line KGN Full text
2021
Huang, Mingquan | Li, Xingjie | Jia, Shengjun | Liu, Shuang | Fu, Li | Jiang, Xue | Yang, Meng
Bisphenol AF (BPAF) is an emerging environmental pollutant. Although BPAF is widely spread in the environment and human surroundings, its interference with ovarian function has not been fully elucidated. The aim of this study was to identify the mechanism underlying the effect of BPAF on the apoptosis of KGN cells, which maintain the physiological characteristics of ovarian granulosa cells. Our results indicated that BPAF induces KGN cell apoptosis in a concentration- and time-dependent manner. Meanwhile, BPAF exposure significantly promoted the expression of pro-apoptotic proteins, including Bax, Bid and Bak, while the expression of anti-apoptotic proteins, such as Bcl-2, Bcl-xL and Mcl-1, decreased significantly. We further detected a significant increase in intracellular ROS levels in response to high concentrations of BPAF exposure. After blocking the corresponding pathway, it was found that ROS mediates ASK1 and JNK activation. Furthermore, the role of Ca²⁺ overload and estrogen receptor β (ERβ) in BPAF-induced KGN cell apoptosis was also confirmed by using inhibitors. These results suggest that BPAF has potential reproductive toxicity for females, and ROS-ASK1-JNK axis may play a key role in BPAF-induced ovarian dysfunction. In addition, Ca²⁺ overload and ERβ pathway activation may also be an important mechanism of reproductive toxicity of BPAF.
Show more [+] Less [-]Bacillus circulans MTCC 7906 aided facile development of bioconjugate nano-silica alkaline protease formulation with superlative dehairing potential Full text
2021
Joshi, Nishu | Kocher, Gurvinder Singh | Kalia, Anu | Banga, Harmanjit Singh
The tannery industries utilize environmentally hazardous chemicals to achieve dehairing of animal hides, which causes enormous waterbed pollution & high TDS load. Alkaline protease enzyme for dehairing can be an effective solution to resolve the environmental problems of the tannery industry waste. However, stable, cost-efficient and eco-benign formulations of alkaline protease need to be developed for commercial applications in the tannery industry. This works aimed at development of a nano-formulation of the enzyme alkaline protease (AKP) as a bioconjugate nano silica-alkaline protease enzyme (BC–SiNP-AKP). This work reports one pot green synthesis of the BC-SiNP-AKP bionanoconjugate complex which included both biotemplating and immobilization of the AKP on to the synthesized silica nanoparticles from cell-free extracts of Bacillus circulans grown in potato peel based medium. Among the cell free crude, acetone concentrated and purified sols of the enzyme AKP, acetone precipitated enzyme sol was found to be best for the biological SiNP synthesis and formation of BC-SiNP-AKP conjugate. The BC-SiNP-AKP had size ranging from 100 to 200 nm with crystalline morphologies varying from spherical, tubular to laminated crystallites. The developed bioconjugate formulation displayed 1.7-fold increase in the enzyme activity post nano-conjugation with superlative dehairing potential on goat skin. The optimized parameters for dehairing were found to be as temperature 37 °C for 24 h of incubation and with enzyme to buffer ratio (2: 50 mL). Thereafter, the dehaired skin was assessed for its histopathological effects, which were found to be safe without any deteriorative changes. The developed formulation is environmentally congenial for its use as depilating agent for animal hides in terms of being green, single pot and cost effective synthesis.
Show more [+] Less [-]Exposure to constant light impairs cognition with FTO inhibition and m6A-dependent TrκB repression in mouse hippocampus Full text
2021
Yang, Yang | Feng, Yue | Hu, Yun | Liu, Jie | Shi, Hailing | Zhao, Ruqian
N6-methyladenosine (m⁶A) mRNA methylation plays a role in various brain functions. Exposure to chronic constant light (CCL) has been reported to impair cognition, yet whether the underlying mechanism involves m⁶A remains unknown. In this study, mice exposed to CCL for 3 weeks show impaired cognitive behavior, which was associated with increased m⁶A level in hippocampus. Accordingly, the m⁶A demethylase FTO was inhibited while the methyltransferases METTL3, METTL14 and WTAP, as well as the reader protein YTHDF2, were elevated in the hippocampus of CCL-exposed mice. CCL exposure significantly activated hippocampal expression of circadian regulator cryptochrome 1 and 2 (CRY1 and 2). Meanwhile, hippocampal neurogenesis was impaired with suppression of BDNF/TrκB/ERK pathway. To further delineate the signaling pathway and the role of m⁶A, we altered the expression of CRY1/2 in hippocampus neuron cells. CRY1/2 overexpression inhibited FTO and increased m⁶A levels, while CRY1/2 knockdown led to opposite results. Luciferase reporter analysis further confirmed CRY1/2-induced FTO suppression. Furthermore, FTO knockdown increased m⁶A on 3′UTR of TrκB mRNA, and decreased TrκB mRNA stability and TrκB protein expression, in a YTHDF2-dependent manner. These results indicate that CCL-activated CRY1/2 causes transcriptional inhibition of FTO, which suppresses TrκB expression in hippocampus via m⁶A-dependent post-transcriptional regulation and contributes to impaired cognitive behavior in mice exposed to constant light.
Show more [+] Less [-]Antibiotic resistance and class 1 integron genes distribution in irrigation water-soil-crop continuum as a function of irrigation water sources Full text
2021
Shamsizadeh, Zahra | Ehrampoush, Mohammad Hassan | Nikaeen, Mahnaz | Farzaneh Mohammadi, | Mokhtari, Mehdi | Gwenzi, Willis | Khanahmad, Hossein
The increasing demand for fresh water coupled with the need to recycle water and nutrients has witnessed a global increase in wastewater irrigation. However, the development of antibiotic resistance hotspots in different environmental compartments, as a result of wastewater reuse is becoming a global health concern. The effect of irrigation water sources (wastewater, surface water, fresh water) on the presence and abundance of antibiotic resistance genes (ARGs) (blaCTX₋ₘ₋₃₂, tet-W, sul1, cml-A, and erm-B) and class 1 integrons (intI1) were investigated in the irrigation water-soil-crop continuum using quantitative real-time PCR (qPCR). Sul1 and blaCTX₋ₘ₋₃₂ were the most and least abundant ARGs in three environments, respectively. The abundance of ARGs and intI1 significantly decreased from wastewater to surface water and then fresh water. However, irrigation water sources had no significant effect on the abundance of ARGs and intI1 in soil and crop samples. Principal component analysis (PCA) showed that UV index and air temperature attenuate the abundance of ARGs and intI1 in crop samples whereas the air humidity and soil electrical conductivity (EC) promotes the ARGs and intI1. So that the climate condition of semi-arid regions significantly affects the abundance of ARGs and intI1 in crop samples. The results suggest that treated wastewater might be safely reused in agricultural practice in semi-arid regions without a significant increase of potential health risks associated with ARGs transfer to the food chain. However, further research is needed for understanding and managing ARGs transfer from the agricultural ecosystem to humans through the food chain.
Show more [+] Less [-]Primary and secondary aerosols in small passenger vehicle emissions: Evaluation of engine technology, driving conditions, and regulatory standards Full text
2021
Park, Gyutae | Kim, Kyunghoon | Park, Taehyun | Kang, Seokwon | Ban, Jihee | Choi, Siyoung | Yu, Dong-Gil | Lee, Sanguk | Lim, Yunsung | Kim, Sunmoon | Mun, Sunhee | Woo, Jung-Hun | Jeon, Chan-Soo | Lee, Taehyoung
The characteristics of primary gas/aerosol and secondary aerosol emissions were identified for small passenger vehicles using typical fuel types in South Korea (gasoline, liquefied petroleum gas (LPG), and diesel). The generation of secondary organic aerosol (SOA) was explored using the potential aerosol mass (PAM) oxidation flow reactor. The primary emissions did not vary significantly between fuel types, combustion technologies, or aftertreatment systems, while the amount of NH₃ was higher in gasoline and LPG vehicle emissions than that in diesel vehicle emissions. The SOA emission factor was 11.7–66 mg kg-fuel⁻¹ for gasoline vehicles, 2.4–50 mg kg-fuel⁻¹ for non-diesel particulate filter (non-DPF) diesel vehicles (EURO 2–3), 0.4–40 mg kg-fuel⁻¹ for DPF diesel vehicles (EURO 4–6), and 3–11 mg kg-fuel⁻¹ for LPG vehicles (lowest). The carbonaceous aerosols (equivalent black carbon (eBC) + primary organic aerosol + SOA) of diesel vehicles in EURO 4–6 were reduced by up to 95% compared to those in EURO 2–3. The expected SOA yield increased through the hot-condition combustion section of a vehicle, over the SOA range of 0.2–155 μg m⁻³. These results provide the necessary data to analyze all types of SOA generated by the gas-phase oxidation in vehicle emissions in metropolitan areas.
Show more [+] Less [-]Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China Full text
2021
Air quality has been significantly improved in China in recent years; however, our knowledge of the long-term changes in health risks from exposure to air pollutants remain less understood. Here we investigated the temporal variations and spatial distributions of six criteria pollutants (SO₂, NO₂, O₃, CO, PM₂.₅ and PM₁₀) in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) during 2015–2019. SO₂ showed 36−60% reductions in three regions, comparatively, NO₂ decreased by 3–17% in BTH and YRD and had a 5% increase in PRD. PM₂.₅ and PM₁₀ showed the largest reductions in BTH (30−33%) and the lowest in PRD (7−13%), while O₃ increased by 9% during 2015–2019 particularly in BTH and YRD. Assuming that only air pollutants above given thresholds exert excess risk (ERₜₒₜₐₗ) of mortality, we found that the different variations of pollutants have caused ERₜₒₜₐₗ in BTH decreasing significantly from 4.8% in 2015 to 2.0% in 2019, while from 1.9% to 1.0% in YRD, and a small change in PRD. These results indicate substantially decreased health risks of mortality from exposure to air pollutants as a response to improved air quality. Overall, PM₂.₅ dominated ERₜₒₜₐₗ accounting for 42−53% in BTH and 58−64% in YRD with steadily increased contributions, yet ERₜₒₜₐₗ presented strong seasonal dependence on air pollutants with largely increased contribution of O₃ in summer. The ERₜₒₜₐₗ caused by SO₂ was decreased substantially and became negligible except in winter in BTH, while NO₂ only played a role in winter. We also found that ERPM₂.₅ was compositional dependent with organics being the major contributor at low ERPM₂.₅ while nitrate was more important at high ERPM₂.₅. Our results highlight that evaluation of public health risks of air pollution needs to consider chemical differences of PM in different regions in addition to dominant air pollutants in different seasons.
Show more [+] Less [-]Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions Full text
2021
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N₂) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N₂ flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H₂) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H₂ yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
Show more [+] Less [-]Abundant sediment organic matter potentially facilitates chemical iron reduction and surface water blackness in a Chinese deep lake Full text
2021
Li, Biao | Feng, Muhua | Chen, Xiangchao | Wang, Yarui | Shen, Yue | Wu, Qinglong L.
Black bloom has become an increasingly severe environmental and ecological problem in lots of lakes. Ferrous monosulfide (FeS), which is closely related to chemical iron reduction (CIR), is considered the major cause for black water in shallow lakes, but few studies focus on the effect of organic matters (OM) content on iron and sulfate reduction and its contribution to the black bloom in deep lakes. Here, in Lake Fuxian, a Chinese deep lake which has also suffered from black bloom, FeS was identified responsible for the surface water blackness by using multiple microscopy and element analyses. Dissolved oxygen (DO) penetrated 1.6–4.2 mm in all sediment sites, further indicating FeS formed in the sediments instead of the permanently oxic water column. Geochemical characteristics revealed by diffusive gradients in thin films (DGT) showed that DGT-Fe²⁺ concentration was 57.6–1919.4 times higher than the DGT-S²⁻ concentration and both were positively correlated with DGT-PO₄³⁻. Combining DGT profiles and anaerobic OM remineralization rate according to bag incubation, iron reduction is more effective than sulfate reduction although the two processes coexisted. Moreover, correlation of DGT-Fe²⁺ and DGT-PO₄³⁻ was better than that of DGT-PO₄³⁻ and DGT-S²⁻ at OM-depleted sites but opposite at OM-rich sites. In addition, total organic carbon (TOC) was significantly positively related to acid volatile sulfide (AVS). We therefore conclude that abundant OM potentially exacerbate chemical iron reduction and further lead to surface water blackness. Our study revealed the mechanisms behind the black bloom and gives credence to the management strategy of reducing OM loading to protect water quality in deep lakes.
Show more [+] Less [-]