Refine search
Results 1341-1350 of 7,538
Effects of composite environmental materials on the passivation and biochemical effectiveness of Pb and Cd in soil: Analyses at the ex-planta of the Pak-choi root and leave Full text
2022
Wang, An | Wang, Yao | Zhao, Peng | Huang, Zhanbin
Passivation of soil heavy metals using environmental materials is an important method or important in situ remediation measure. There are more studies on inorganic environmental materials for heavy metal passivation, but not enough studies on organic and their composite environmental materials with inorganic ones. In order to reveal the passivation effect of coal-based ammoniated humic acid (CAHA), biochemical humic acid (BHA), biochar (BC) and other organic types and inorganic environmental materials such as zeolites (ZL) on soil heavy metals and their biological effectiveness. The microstructures of these materials were analyzed by Scanning electron microscope (SEM). The main components of the environmental materials were analyzed by Energy dispersive spectrometer (EDS), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction spectrum (XRD) to elucidate the mechanism of passivation of heavy metals in soil by these environmental materials. The study was conducted to investigate the effects of different types of environmental materials and their combinations on the passivation effect and biological effectiveness of Pb and Cd complex contamination in soil by means of soil incubation and pot experiments using single-factor and multifactor multilevel orthogonal experimental designs. Soil incubation experiments proved that the effective state of soil Pb and Cd in T₇ was reduced by 13.40% and 11.07%, respectively. The extreme difference analysis determined the optimized formulation of soil lead and cadmium passivation as BHA: CAHA: BC: ZL = 3.5:5:20:10. The pot experiment proved that the application of composite environmental materials led to the reduction of lead and cadmium content and increase of biomass of Pak-choi, and the optimal dosage of optimized composite environmental materials was 23.1 g/kg.
Show more [+] Less [-]Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation Full text
2022
Wen, Siyue | Zhao, Yu | Liu, Shanji | Yuan, Hongbin | You, Tao | Xu, Hengyi
Microplastics (MPs), an emerging environmental pollutant, have been clarified to induce testicular disorder in mammals. And the current studies have delineated a correlation between gut microbiota and male reproduction. However, it's still unclear whether gut microbiota gets involved in MPs-induced reproductive toxicity. In this work, we constructed a mouse model drinking 5 μm polystyrene-MPs (PS-MPs) at the concentrations of 100 μg/L and 1000 μg/L for 90 days. Evident histological damage, spermatogenetic disorder and hormones synthesis inhibition were observed in PS-MPs exposed mice. With fecal microbiota transplantation (FMT) trial, the recipient mice exhibited gut microbial alteration, and the elevated abundance of Bacteroides and Prevotellaceae_UCG-001 were positively correlated with testicular disorder according to spearman correlation analysis. Mechanistically, increased proportion of pro-inflammatory bacteria may drive translocation of T helper 17 (Th17) cells, resulting in overproduced interleukin (IL)-17 A and downstream inflammatory response in both the mice exposed to PS-MPs and corresponding recipient mice. In summary, our findings revealed the critical role of gut microbiota in PS-MPs-induced reproductive toxicity, and tried to elucidate the underlying mechanism of gut microbial dysregulation-mediated IL-17 A signaling pathway. Furthermore, this study also provides the research basis for gut microbiota-targeted treatment of male infertility in the future.
Show more [+] Less [-]Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations Full text
2022
Lin, Shao | Ryan, Ian | Paul, Sanchita | Deng, Xinlei | Zhang, Wangjian | Luo, Gan | Dong, Guang-Hui | Nair, Arshad | Yu, Fangqun
While the health impacts of larger particulate matter, such as PM₁₀ and PM₂.₅, have been studied extensively, research regarding ultrafine particles (UFPs or PM₀.₁) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013–2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lag0–lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7–1.2), and delayed and prolonged ERs%: 0.1–0.3 (95% CIs: 0.1–0.5) between UFPnc and CVDs (lag0-3–lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5–17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.
Show more [+] Less [-]Nitrate source apportionment and risk assessment: A study in the largest ion-adsorption rare earth mine in China Full text
2022
Zhang, Qiuying | Shu, Wang | Li, Fadong | Li, Ming | Zhou, Jun | Tian, Chao | Liu, Shanbao | Ren, Futian | Chen, Gang
Nitrate (NO₃⁻) pollution in water bodies has received widespread attention, but studies on nitrogen transformation and pollution risk assessment are still limited, especially in rare earth mining areas. In this study, surface and groundwater samples were collected from the largest rare earth mining site in southern China, and analyzed for the hydrochemical and stable isotopic characteristics. The results showed that the NO₃⁻ concentrations ranged from 1.61 to 453.11 mg/L, with 35% of surface water and 53.3% of groundwater samples exceeding the WHO standard (i.e., 50 mg/L). Health risk assessment showed that 31.4% of the water samples had a moderate to high non-carcinogenic risk, and the high-risk areas were concentrated in rare earth mining regions. Additionally, adults were more vulnerable to the non-carcinogenic health risks than children. The high variability of δ¹⁵N–NO₃⁻ (from −6.43 to 17.09‰) and δ¹⁸O–NO₃⁻ (from −7.91 to 22.79‰) showed that NO₃⁻ was influenced by multiple nitrogen sources and transformation processes. Hydrochemistry and isotopic evidence further indicated that NO₃⁻ was primarily influenced by nitrification and hydraulic connection between surface and groundwater. The results of the Bayesian mixing model showed that about 70% of NO₃⁻ originated from mine drainage and soil N in the rare earth mining area, while more than 90% of NO₃⁻ originated from fertilizer, soil N, and manure and sewage in rural and urban areas in the middle and downstream. This study suggests reducing anthropogenic nitrogen discharge (e.g., leaching agents and fertilizer inputs) as the primary means of NO₃⁻ pollution control with biogeochemical processes (e.g., denitrification) to further reduce its pollution.
Show more [+] Less [-]Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development Full text
2022
Zhao, Miaomiao | Yin, Nuoya | Yang, Renjun | Li, Shichang | Zhang, Shuxian | Faiola, Francesco
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs’ potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
Show more [+] Less [-]Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms Full text
2022
Gou, Yaling | Song, Yun | Yang, Sucai | Yang, Yan | Cheng, Yanan | Li, Jiabin | Zhang, Tengfei | Cheng, Yanjun | Wang, Hongqi
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO₂ as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO₃ (CO₂) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO₂ addition (EC2000) promoted PAH degradation compared to soil without added CO₂ (EC0), with 4.18%, 9.01%–8.05%, and 6.19%–12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 10⁸ g⁻¹ soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO₂ application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Show more [+] Less [-]Long-term exposure to nanoplastics reshapes the microbial interaction network of activated sludge Full text
2022
Chen, Daying | Wei, Zizhang | Wang, Zhimin | Yang, Yongkui | Ma, Yukun | Wang, Xiaohui | Zhao, Lin
Wastewater treatment plants have been identified as an important gathering spot for nanoplastics, possibly having unintended impacts on important biological nutrient removal processes. The underlying effects of long-term exposure of activated sludge to nanoplastics on nutrient removal and the mechanisms involved remain unclear. This study investigated the effect of polystyrene nanoplastics (Nano-PS) on the treatment performance and microbial community structure, and network in activated sludge. The results indicate that 1000 μg/L Nano-PS had chronic negative effects on the treatment performance in a continuous test over 140 days. Nano-PS had no significant impact in the earlier stages (0–50 days). However, as exposure time increased, the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen (TN) decreased by 2.7, 33.2, and 23.5%, respectively, in the later stages (87–132 days). These adverse impacts further manifested as a change in the topological characteristics, forming a smaller scale, lower complexity, and weaker transfer efficiency of the microbial network. Moreover, the scale and complexity of subnetwork-nitrogen removal bacteria and subnetwork-nitrifier were inhibited, leading to an increase in the effluent TN and NH₄⁺-N. The decreased modules and connectors (keystone taxa) likely caused the deterioration of treatment performance and functional diversity, which was consistent with the change in PICRUSt results. Less competition, denser nodes, and more complex module structures were induced as a strategy to mediate the long-term stress of nano-PS. To our knowledge, this is the first attempt to explore the long-term effects of nano-PS on the microbial interaction network of activated sludge, laying an experimental foundation for reducing the risks associated with nanoplastics.
Show more [+] Less [-]Impacts of emergency health protection measures upon air quality, traffic and public health: evidence from Oxford, UK Full text
2022
Singh, Ajit | Bartington, Suzanne E. | Song, Congbo | Ghaffarpasand, Omid | Kraftl, Martin | Shi, Zongbo | Pope, Francis D. | Stacey, Brian | Hall, James | Thomas, G Neil | Bloss, William J. | Leach, Felix C.P.
Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities in 2020. Machine learning provides a reliable approach for assessing the contribution of these changes to air quality. This study investigates impacts of health protection measures upon air pollution and traffic emissions and estimates health and economic impacts arising from these changes during two national ‘lockdown’ periods in Oxford, UK. Air quality improvements were most marked during the first lockdown with reductions in observed NO₂ concentrations of 38% (SD ± 24.0%) at roadside and 17% (SD ± 5.4%) at urban background locations. Observed changes in PM₂.₅, PM₁₀ and O₃ concentrations were not significant during first or second lockdown. Deweathering and detrending analyses revealed a 22% (SD ± 4.4%) reduction in roadside NO₂ and 2% (SD ± 7.1%) at urban background with no significant changes in the second lockdown. Deweathered-detrended PM₂.₅ and O₃ concentration changes were not significant, but PM₁₀ increased in the second lockdown only. City centre traffic volume reduced by 69% and 38% in the first and second lockdown periods. Buses and passenger cars were the major contributors to NO₂ emissions, with relative reductions of 56% and 77% respectively during the first lockdown, and less pronounced changes in the second lockdown. While car and bus NO₂ emissions decreased during both lockdown periods, the overall contribution from buses increased relative to cars in the second lockdown. Sustained NO₂ emissions reduction consistent with the first lockdown could prevent 48 lost life-years among the city population, with economic benefits of up to £2.5 million. Our findings highlight the critical importance of decoupling emissions changes from meteorological influences to avoid overestimation of lockdown impacts and indicate targeted emissions control measures will be the most effective strategy for achieving air quality and public health benefits in this setting.
Show more [+] Less [-]The effects of H2O2- and HNO3/H2SO4-modified biochars on the resistance of acid paddy soil to acidification Full text
2022
He, Xian | Hong, Zhi-neng | Shi, Ren-yong | Cui, Jia-qi | Lai, Hong-wei | Lu, Hai-long | Xu, Ren-kou
Biochar was prepared from rice straw and modified with 15% H₂O₂ and 1:1 HNO₃/H₂SO₄, respectively. The unmodified biochars and HCl treated biochars for carbonate removal were used as control. The biochars were added to the acid paddy soil collected from Langxi, Anhui Province, China at the rate of 30 g/kg. The paddy soil was flooded and then air-dried, and soil pH and Eh were measured in situ with pH electrode and platinum electrode during wet-dry alternation. Soil pH buffering capacity (pHBC) was determined by acid-base titration after the wet-dry treatment. Then, the simulated acidification experiments were carried out to study the changing trends of soil pH, base cations and exchangeable acidity. The results showed that soil pHBC was effectively increased and the resistance of the paddy soil to acidification was apparently enhanced with the incorporation of H₂O₂- and HNO₃/H₂SO₄-modified biochars. Surface functional groups on biochars were mainly responsible for enhanced soil resistance to acidification. During soil acidification, the protonation of organic anions generated by dissociation of these functional groups effectively retarded the decline of soil pH. The modification of HNO₃/H₂SO₄ led to greater increase in carboxyl functional groups on the biochars than H₂O₂ modification and thus HNO₃/H₂SO₄-modified biochars showed more enhancement in soil resistance to acidification than H₂O₂-modified biochars. After a wet-dry cycle, the pH of the paddy soil incorporated with HNO₃/H₂SO₄-modified biochar increased apparently. Consequently, the addition of HNO₃/H₂SO₄-modified biochar can be regarded as a new method to alleviate soil acidification. In short, the meaning of this paper is to provide a new method for the amelioration of acid paddy soils.
Show more [+] Less [-]Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application Full text
2022
He, Zhanfei | Dong, Lingfeng | Zhang, Keqing | Zhang, Daoyong | Pan, Xiangliang
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO₂)²⁺ ions on the cell surface, glycolysis produced 3–10 mg/L of lactic acid (pH 4.7–6.0), and lactic acid solubilized Ca₃(PO₄)₂ to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca₃(PO₄)₂ and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca₃(PO₄)₂ are good coupled fertilizers for U-contaminated agricultural soil.
Show more [+] Less [-]