Refine search
Results 1341-1350 of 7,351
Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty Full text
2022
Jia, Bin | Tian, Yingze | Dai, Yuqing | Chen, Rui | Zhao, Peng | Chu, Jingjing | Feng, Xin | Feng, Yinchang
The health effects of potentially toxic elements (PTEs) in airborne particulate matter (PM) are strongly dependent on their size distribution and dissolution. This study examined PTEs within nine distinct sizes of PM in a Chinese megacity, with a focus on their deposited and dissolved bioaccessibility in the human pulmonary region. A Multiple Path Particle Dosimetry (MPPD) model was used to estimate the deposited bioaccessibility, and an in-vitro experiment with simulated lung fluid was conducted for dissolved bioaccessibility. During the non-heating season, the dissolved bioaccessible fraction (DBF) of As, Cd, Co, Cr, Mn, Pb and V were greater in fine PM (aerodynamics less than 2.1 μm) than in coarse PM (aerodynamics between 2.1 and 10 μm), and vice versa for Ni. With the increased demand of heating, the DBF of Pb and As decreased in fine particle sizes, probably due to the presence of oxide/silicate compounds from coal combustion. Inhalation health risks based on the bioaccessible concentrations of PTEs displayed the peaks in <0.43 μm and 2.1–3.3 μm particulate sizes. The non-cancer risk was at an acceptable level (95th percentiles of hazard index (HI) was 0.49), but the cancer risk exceeded the threshold value (95th percentiles of total incremental lifetime cancer risk (TCR) was 8.91 × 10⁻⁵). Based on the results of uncertainty analysis, except for the exposure frequency, the total concentrations and DBF of As and Cr in <0.43 μm particle size segment have a greater influence on the uncertainty of probabilistic risk.
Show more [+] Less [-]Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil Full text
2022
Habitat loss and fragmentation together represent the most significant threat to the world's biodiversity. In order to guarantee the survival of this diversity, the monitoring of bioindicators can provide important insights into the health of a natural environment. In this context, we used the comet assay and micronucleus test to evaluate the genotoxic susceptibility of 126 bats of eight species captured in soybean and sugarcane plantation areas, together with a control area (conservation unit) in the Cerrado savanna of central Brazil. No significant differences were found between the specimens captured in the sugarcane and control areas in the frequency of micronuclei and DNA damage (comet assay). However, the omnivore Phyllostomus hastatus had a higher frequency of nuclear abnormalities than the frugivore Carollia perspicillata in the sugarcane area. Insectivorous and frugivorous bats presented a higher frequency of genotoxic damage than the nectarivores in the soybean area. In general, DNA damage and micronuclei were significantly more frequent in agricultural environments than in the control area. While agricultural development is an economic necessity in developing countries, the impacts on the natural landscape may result in genotoxic damage to the local fauna, such as bats. Over the medium to long term, then DNA damage may have an increasingly negative impact on the wellbeing of the local species.
Show more [+] Less [-]Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis Full text
2022
Vendl, Catharina | Pottier, Patrice | Taylor, Matthew D. | Bräunig, Jennifer | Gibson, Matthew J. | Hesselson, Daniel | Neely, G Gregory | Lagisz, Malgorzata | Nakagawa, Shinichi
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I² = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
Show more [+] Less [-]Marine sponges as coastal bioindicators of rare earth elements bioaccumulation in the French Mediterranean Sea Full text
2022
Orani, Anna Maria | Vassileva, Emilia | Thomas, Olivier P.
In recent years, the widespread use of rare earth elements (REEs) has raised the issue of their harmful effects on the aquatic environment. REEs are now considered as contaminants of emerging concern. Despite the increasing interest of REEs in modern industry, there is still a lack of knowledge on their potential impact on the environment and especially in the marine environment. In this context, the need for monitoring tools to assess REEs pollution status in marine ecosystems is considered as the first step towards their risk assessment. Similar to mussels, filter-feeder sponges have emerged as a key bio-monitor species for marine chemical pollution. Their key position at a low level of the trophic chain makes them suitable model organisms for the study of REEs potential transfer through the aquatic food web. We therefore undertook a comparative study on seven marine sponge species, assessing their capability to bioaccumulate REEs and to potentially transfer these contaminants to higher positions in the trophic chain. A spike experiment under controlled conditions was carried out and the intra- and inter-species variability of REEs was monitored in the sponge bodies by ICP-MS. Concentrations were found to be up to 170 times higher than the corresponding control specimens. The tubular species Aplysina cavernicola showed the highest concentrations among the studied species. This study shows, for the first time, the potential of marine sponges as bio-monitor of REEs as well as their possible application in the bioremediation of polluted sites.
Show more [+] Less [-]Multiple stable isotopes and geochemical approaches to elucidate groundwater salinity and contamination in the critical coastal zone: A case from the Bou-areg and Gareb aquifers (North-Eastern Morocco) Full text
2022
Elmeknassi, Malak | Bouchaou, Lhoussaine | El Mandour, Abdennabi | Elgettafi, Mohammed | Himi, Mahjoub | Casas, Albert
Mediterranean areas are characterized by complex hydrogeological systems, where water resources are faced with several issues such as salinity and pollution. Fifty-one water samples were gathered from the Bou-areg coastal and the Gareb aquifers to evaluate the source of water salinity and to reveal the processes of the different sources of pollution using a variety of chemical and isotopic indicators (δ²H–H2O, δ¹⁸O–H2O, δ³⁴S–SO4, and δ¹⁸O–SO4). The results of the hydrochemical analysis of water samples show that the order of dominated elements is Cl⁻ > HCO₃⁻ > SO4₂⁻ > NO₃⁻ and Na⁺ > Ca²⁺ > Mg²⁺ > K⁺ and evidenced extremely high salinity levels (EC up to 22000 μS/cm). All samples exceeded the WHO drinking water guidelines, making them unfit for human consumption. Ion ratio diagrams, isotopic results, and graphical comparing indicate that the mineralization of groundwater in the area, is controlled by carbonate dissolution, evaporite dissolution, ion exchange, and sewage invasion. The return of irrigation water plays a significant role as well in the groundwater recharge and its mineralization by fertilizers mainly. Evaporites (Gypsum), sewage, and fertilizers constitute the main sources of sulfates in the investigated water resources. These scientific results will be an added value for decision-makers to more improve the sustainable management of groundwater in water-stressed regions. The use of chemical and isotopic tracers once again shows their relevance in such zones where systematic monitoring is lacking.
Show more [+] Less [-]Leaching of microplastic-associated additives in aquatic environments: A critical review Full text
2022
Do, Anh TNgoc | Ha, Yeonjeong | Kwon, Jung-Hwan
Microplastic pollution has attracted significant attention as an emerging global environmental problem. One of the most important issues with microplastics is the leaching of harmful additives. This review summarizes the recent advances in the understanding of the leaching phenomena in the context of the phase equilibrium between microplastics and water, and the release kinetics. Organic additives, which are widely used in plastic products, have been introduced because they have diverse physicochemical properties and mass fractions in plastics. Many theoretical and empirical models have been utilized in laboratory and field studies. However, the partition or distribution constant between microplastics and water (Kₚ) and the diffusivity of an additive in microplastics (D) are the two key properties explaining the leaching equilibrium and kinetics of hydrophobic organic additives. Because microplastics in aquatic environments undergo dynamic weathering, leaching of organic additives with high Kₚ and/or low D cannot be described by a leaching model that only considers microplastic and water phases with a fixed boundary. Surface modifications of microplastics as well as biofilms colonizing microplastic surfaces can alter the leaching equilibrium and kinetics and transform additives. Further studies on the release of hydrophobic organic additives and their transformation products under various conditions are required to extend our understanding of the environmental fate and transport of these additives in aquatic environments.
Show more [+] Less [-]The zebrafish (Danio rerio) embryo-larval contact assay combined with biochemical biomarkers and swimming performance in sewage sludge and hydrochar hazard assessment Full text
2022
Hydrothermal carbonization is considered a powerful technology to convert sewage sludge (SS) into a valuable carbonaceous solid known as hydrochar (HC). Up to now criteria for landfill application of SS and HC are based only on physicochemical properties and levels of pollutant residues. Nevertheless, to ensure their safe environmental applications it is mandatory to develop biosensors which can provide relevant information on their toxic potential for natural ecosystems. Therefore, this study aimed to assess the suitability of a contact assay using zebrafish embryo/larvae combined with sub-lethal end-points to evaluate the hazard associated with SS and related HC exposure. A suite of biomarkers was also applied on larvae, related to detoxification and oxidative stress as the activity of Ethoxyresorufin-O-deethylase, glutathione-S-transferase, and catalase, the content of reactive oxygen species and the behavioral assay using the DanioVision™ chamber. Legacy priority pollutants were also measured either in SS and HC tested samples and in contact waters. The exposure to SS caused higher lethality compared to HC. No significant changes in the activity of oxidative stress markers was observed upon exposure to both matrices. The behavioral test showed a hypoactivity condition in larvae exposed to both SS and HC with the effects of SS stronger than HC. Chemical analysis revealed the presence of trace elements and halogenated compounds in either SS, HC. Heavy metals were also released in contact waters, while volatile hydrocarbons (C6–C10) and halogenated compounds resulted below LOD (<0.05 μ L⁻¹). Our study highlights the suitability of zebrafish embryotoxicity test, coupled with behavioral traits, as screening tool for assessing potential risks, associated with the landfill application of both SS and HC, for aquatic wildlife.
Show more [+] Less [-]N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil Full text
2022
Zhang, Xi | Zhang, Junqian | Song, Mengxin | Dong, Yubing | Xiong, Zhengqin
Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N₂O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N₂O and NO emissions. However, the aging effects of biochar on soil N₂O and NO production and the relevant mechanisms are not thoroughly understood. A¹⁵N tracing microcosm study was conducted to clarify the responses of N₂O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N₂O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N₂O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N₂O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially lab-aged biochar had no effect on N₂O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N₂O and NO fluxes were closely associated with soil NH₄⁺-N and NO₂⁻-N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N₂O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N₂O and NO mitigation in vegetable soils.
Show more [+] Less [-]Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe Full text
2022
Luo, Yunlong | Al Amin, Md | Gibson, Christopher T. | Chuah, Clarence | Tang, Youhong | Naidu, R. | Fang, Cheng
The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1–5 mm can be released, along with millions of small microplastics in the range of 1–100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.
Show more [+] Less [-]Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants Full text
2022
Hoang, Son A. | Lamb, Dane | Sarkar, Binoy | Seshadri, Balaji | Lam, Su Shiung | Vinu, Ajayan | Bolan, Nanthi S.
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.
Show more [+] Less [-]