Refine search
Results 1361-1370 of 4,938
Vulnerability of Indian wheat against rising temperature and aerosols Full text
2019
Sonkar, Geetika | Mall, R.K. | Banerjee, Tirthankar | Singh, Nidhi | Kumar, T.V Lakshmi | Chand, Ramesh
Potential impacts of change in climate on Indian agriculture may be significantly adverse, if not disastrous. There are projections of potential loss in wheat yield due to the rise in daily minimum (Tmin) and maximum (Tmax) temperature, but only few researchers have considered the extent of such loss on a spatial scale. We therefore, systematically studied the effect of change in Tmax, Tmean (daily average temperature) and Tmin, solar radiation (Srad) and precipitation (RAIN) during wheat growing seasons (from 1986 to 2015) on wheat crop yield over five wheat growing zones across India, taking into account the effect modification by aerosol loading (in terms of aerosol optical depth, 2001–2015). We note that for the entire India, 1 °C rise in Tmean resulted a 7% decrease in wheat yield which varied disproportionately across the crop growing zones by a range of −9% (peninsular zone, PZ) to 4% (northern hills zone, NHZ). The effect of Tmean on wheat yield was identical to the marginal effect of Tmax and Tmin, while 1% increase in Srad enhance wheat yield by 4% for all India with small geographical variations (2–5%), except for the northern hill region (−4%). Rise in 1 °C Tmean exclusively during grain filling duration was noted positive for all the wheat growing regions (0–2%) except over central plain zone (−3%). When estimates of weather variables on wheat yield was combined with the estimated impact of aerosols on weather, the most significant impact was noted over the NHZ (−23%), which otherwise varied from −7% to −4%. Overall, the study brings out the conclusive evidence of negative impact of rising temperature on wheat yield across India, which we found spatially inconsistent and highly uncertain when integrated with the compounding effect of aerosols loading.
Show more [+] Less [-]The atmospheric transport and pattern of Medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China Full text
2019
Wu, Jing | Cao, Dandan | Gao, Wei | Lv, Kun | Liang, Yong | Fu, Jianjie | Gao, Yan | Wang, Yawei | Jiang, Guibin
Large amounts of short chain and medium chain chlorinated paraffins (SCCPs and MCCPs) are released into the environment during production and usage. However, compared to SCCPs, there is a significant lack of attention for MCCPs. In this work, 83 air samples, collected between 2012 and 2015 from the Tibetan Plateau, were analyzed to investigate the airborne levels and distributions of MCCPs, further to evaluate their potential long-range transport behavior on the alpine area. The total air MCCP concentrations at Shergyla Mountain and Lhasa were between 50 and 690 pg/m3 and 800–6700 pg/m3, respectively. At Shergyla Mountain, MCCP concentrations in the air appeared an increasing trend with altitude, which indicated that MCCPs could potentially possess the ability of “mountain cold trapping”. C14 and C15 congener groups were the dominant homologue groups. The mountain contamination potential (MCP) of different congener groups is closely related to their equilibrium partitioning coefficients between octanol and air (KOA), and water and air (KWA). Increasing MCCPs levels might be a potential threat to the environment and human exposure.
Show more [+] Less [-]An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters Full text
2019
Jemec Kokalj, Anita | Kuehnel, Dana | Puntar, Brina | Žgajnar Gotvajn, Andreja | Kalčikova, Gabriela
Current understanding of how environmental aging of microplastics contributes to their ecotoxicity is low. We investigated whether incubation of microplastics in waters with different organic load and toxic potential alters the toxicity of microplastics to crustacean Daphnia magna, fish embryos Danio rerio and plant Lemna minor. Polyethylene primary microplastics; specifically microbeads from facial scrub; were subjected to 3-weeks incubation in low affected spring water, river water, effluent from the municipal wastewater treatment plant (WWTP) and municipal landfill leachate. Primary microplastics had no acute effect on D. magna mobility and D. rerio embryos development. While high organic load wastewaters; WWTP effluent and landfill leachate; showed evident toxicity for D. magna and D. rerio embryos, microplastics aged in these wastewaters had no effect. This suggests that adsorption of pollutants from wastewaters to microplastic particles was not high enough to induce acute toxicity to D. magna and D. rerio. On the contrary, primary microplastics affected the root growth of L. minor. Interestingly, aging of microplastics in low organic-load waters mitigated the toxicity of microplastics for L. minor, while microplastics aged in high-organic load waters had the same adverse effect as primary microplastics. Partly, these effects can be explained by different extent of coating on microplastics in different water samples. This study suggests that aging of microplastics in wastewaters and natural waters did not significantly enhance the toxicity to selected test species, but further studies on plants may be of interest.
Show more [+] Less [-]Comparative toxicokinetics and tissue distribution of prothioconazole and prothioconazole-desthio in Chinese lizards (Eremias argus) and transcriptional responses of metabolic-related genes Full text
2019
Xie, Yun | Li, Leon Yu Zheng | Hao, Weiyu | Chang, Jing | Xu, Peng | Guo, Baoyuan | Li, Jianzhong | Wang, Huili
Prothioconazole (PTC) is a widely used triazolinthione fungicide with low toxicity and short residual period. However, its desulfurization metabolite, prothioconazole-desthio (PTC-d), is more persistent and has higher toxicity in terrestrial animals. In this study, the toxicokinetics (TK) and tissue distribution of PTC and PTC-d in Chinese lizards (Eremias argus) were measured following single oral dose (100 mg kg⁻¹ body weight) treatments. TK parameters indicated that PTC was more rapidly absorbed than PTC-d, as indicated by its shorter time to reach peak concentrations in most tissues. Furthermore, the relative bioavailability of PTC in lizards was lower than that of PTC-d. Compared with PTC, PTC-d preferentially accumulated in lizards, as reflected by longer half-life of PTC-d. During the distribution process, PTC-d generated in vivo was transported from other tissues and was deposited in the skin and tail, where PTC-d may be excreted by exuviation or tail detachment. Preferential enrichment of S-enantiomer of both PTC and PTC-d were observed in all tissues. Hepatic cytochrome P450 gene expression measurement revealed that cyp1a5 and cyp3a28 exhibited the strongest responses in both treatment groups. In addition, the opposite responses of cyp2k4 in different treatment groups may indicate that this enzyme caused differences in the rates of metabolism of the two chemicals. This study compared the TK profile of PTC and its desulfurization metabolite PTC-d in lizards and demonstrated that the desulfurization of PTC could increase its ecological risk due to the higher bioavailability and persistence of PTC-d.
Show more [+] Less [-]Biomonitoring freshwater FISH farms by measuring nitrogen concentrations and the δ15N signal in living and devitalized moss transplants Full text
2019
Carballeira, C. | Carballeira, A. | Aboal, J.R. | Fernández, J.A.
The trophic balance of freshwater aquaculture activities has traditionally been monitored by chemical analysis of water; however, the parameters measured are usually characterized by high temporal variability. Aquatic mosses can be used as biomonitors as they integrate both continuous and episodic contamination events. Here we report, for the first time, a method for monitoring N enrichment in the surroundings of fish farms by measuring the N content and isotopic signal (δ15N) of transplanted living and devitalized specimens of the aquatic moss Fontinalis antipyretica. For this purpose, moss samples (“moss bags”) were exposed at increasing distances (10, 100, 300 and 1000 m) up- and downstream of the effluent discharge points of four trout farms, for 10 and 30 days. The low natural (background) variability in δ15N in upstream samples enabled detection of outlier values, caused by aquaculture discharges, at distances of 10 and 100 m downstream, especially in devitalized moss and after 10 days of exposure. However, the unexpectedly low N contents of moss samples exposed close to the discharge points complicates interpretation of the high levels of N forms detected by conventional physicochemical analysis of water. Although the mechanisms that modify N parameters in moss tissues were not clear, measurement of the isotopic signal δ15N in devitalized moss exposed for 10 days proved useful for monitoring the N pollution associated with intensive freshwater aquaculture.
Show more [+] Less [-]Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation Full text
2019
Mohammadifard, Zahra | Saboori, Rahmatallah | Mirbagheri, Naghmeh Sadat | Sabbaghi, Samad
Removal of toxic formaldehyde from environmental waters is crucial to maintain ecosystem sustainability and human health. In this work, MIL-100(Fe) as a heterogeneous Fenton-like photocatalyst was used for the treatment of formaldehyde-contaminated water. The MIL-100(Fe) was synthesized via a facile solvothermal method and fully characterized using different spectroscopic and microscopic techniques. Based on the results, the formation of highly porous, crystalline, and stable visible light-responsive MIL-100(Fe) was confirmed. The Fenton-like photocatalytic efficiency of the MIL-100(Fe) toward the degradation of formaldehyde was then studied under visible light irradiation. For this purpose, the effect of initial concentration of formaldehyde, photocatalyst dose, H₂O₂ concentration, solution pH, and contact time on the removal efficiency of the MIL-100(Fe) was investigated using central composite design. The obtained results showed that the removal efficiency of the MIL-100(Fe) is significantly affected by the initial concentration of formaldehyde. A second-order model with R² = 0.93 was developed for the system that was able to adequately predict the percentage removal of formaldehyde by the MIL-100(Fe) under different experimental conditions. According to the numerical optimization results, by using 1.13 g L⁻¹ photocatalyst and 0.055 mol L⁻¹ H₂O₂, 93% of formaldehyde can be removed after 119 min from an aqueous solution containing 700 mg L⁻¹ of formaldehyde at pH 6.54.
Show more [+] Less [-]Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii Full text
2019
Beauvais-Flück, Rebecca | Slaveykova, Vera I. | Cosio, Claudia
Microalgae are widely used as representative primary producers in ecotoxicology, while macrophytes are much less studied. Here we compared the bioavailability and cellular toxicity pathways of 2 h-exposure to 10−6 mol L−1 Cu in the macrophyte Elodea nuttallii and the green microalga Chlamydomonas reinhardtii.Uptake rate was similar but faster in the algae than in the macrophyte, while RNA-Sequencing revealed a similar number of regulated genes. Early-regulated genes were congruent with expected adverse outcome pathways for Cu with Gene Ontology terms including gene regulation, energy metabolism, transport, cell processes, stress, antioxidant metabolism and development. However, the gene regulation level was higher in E. nuttallii than in C. reinhardtii and several categories were more represented in the macrophyte than in the microalga. Moreover, several categories including oxidative pentose phosphate pathway (OPP), nitrate metabolism and metal handling were only found for E. nuttallii, whereas categories such as cell motility, polyamine metabolism, mitochondrial electron transport and tricarboxylic acid cycle (TCA) were unique to C. reinhardtii. These differences were attributed to morphological and metabolic differences and highlighted dissimilarities between a sessile and a mobile species. Our results highlight the efficiency of transcriptomics to assess early molecular responses in biota, and the importance of studying more aquatic plants for a better understanding on the impact and fate of environmental contaminants.
Show more [+] Less [-]Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles Full text
2019
Zahedi, Seyed Morteza | Abdelrahman, Mostafa | Hosseini, Marjan Sadat | Hoveizeh, Narjes Fahadi | Tran, Lam-son Phan
The present study investigated the beneficial role of selenium-nanoparticles (Se-NPs) in mitigating the adverse effects of soil-salinity on growth and yield of strawberry (Fragaria × ananassa Duch.) plants by maneuvering physiological and biochemical mechanisms. The foliar spray of Se-NPs (10 and 20 mg L⁻¹) improved the growth and yield parameters of strawberry plants grown on non-saline and different saline soils (0, 25, 50 and 75 mM NaCl), which was attributed to their ability to protect photosynthetic pigments. Se-NPs-treated strawberry plants exhibited higher levels of key osmolytes, including total soluble carbohydrates and free proline, compared with untreated plants under saline conditions. Foliar application of Se-NPs improved salinity tolerance in strawberry by reducing stress-induced lipid peroxidation and H₂O₂ content through enhancing activities of antioxidant enzymes like superoxide dismutase and peroxidase. Additionally, Se-NPs-treated strawberry plants showed accumulation of indole-3-acetic acid and abscisic acid, the vital stress signaling molecules, which are involved in regulating different morphological, physiological and molecular responses of plants to salinity. Moreover, the enhanced levels of organic acids (e.g., malic, citric and succinic acids) and sugars (e.g., glucose, fructose and sucrose) in the fruits of Se-NPs-treated strawberry plants under saline conditions indicated the positive impacts of Se-NPs on the improvement of fruit quality and nutritional values. Our results collectively demonstrate the definite roles of Se-NPs in management of soil salinity-induced adverse effects on not only strawberry plants but also other crops.
Show more [+] Less [-]Contamination of water resources of a small island state by fireworks-derived perchlorate: A case study from Malta Full text
2019
Pace, Colette | Vella, Alfred J.
We have previously reported on the ubiquitous presence of perchlorate in the deposited and airborne fine dusts of Malta and shown that the source of the chemical in the dusts of this small central Mediterranean island is fireworks. There are no local geologic or anthropogenic sources of perchlorate other than firework manufacture and display. The hypothesis was tested that ground-deposited perchlorate will be mobilized in runoff and would partly migrate to the water table and eventually also affect tap water, one third of which being derived from groundwater. Forty four percent of 36 groundwater samples contained perchlorate above detection limit with mean and median values of 1.09 and 1.1 μg L−1. Sixty-two percent of 16 runoff samples collected during storms contained perchlorate above detection limit with mean and maximum concentrations, respectively, of 50.8 and 129 μg L−1, values which are far too high to be explained by atmospheric inputs given that rainwater perchlorate levels are typically <3 μg L−1. Between 42 and 89% of the tap waters analyzed in three sampling campaigns contained perchlorate above detection limit and had mean concentrations ranging from 0.4 to 1.6 μg L−1 suggesting contamination levels similar to those reported from China but lower than levels reported from the USA. The phenomenon of contamination of the water resources of Malta by perchlorate is probably unique in that it results not from geologic or industrial inputs but from an intense and prolonged pyrotechnic activity that is deeply rooted in the popular culture of the islanders.
Show more [+] Less [-]Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species Full text
2019
Hamed, Seham M. | Hassan, Sherif H. | Selim, Samy | Kumar, Amit | Khalaf, Sameh M.H. | Wadaan, Mohammed A.M. | Hozzein, Wael N. | AbdElgawad, Hamada
Phycoremediation technologies significantly contribute to solving serious problems induced by heavy metals accumulation in the aquatic systems. Here we studied the mechanisms underlying Al stress tolerance in two diazotrophic cyanobacterial species, to identify suitable species for Al phycoremediation. Al uptake as well as the physiological and biochemical responses of Anabaena laxa and Nostoc muscorum to 7 days Al exposure at two different concentrations i.e., mild (100 μM) and high dose (200 μM), were investigated. Our results revealed that A. laxa accumulated more Al, and it could acclimatize to long-term exposure of Al stress. Al induced a dose-dependent decrease in photosynthesis and its related parameters e.g., chlorophyll content (Chl a), phosphoenolpyruvate carboxylase (PEPC) and Ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo) activities. The affect was less pronounced in A. laxa than N. muscorum. Moreover, Al stress significantly increased cellular membrane damage as indicated by induced H₂O₂, lipid peroxidation, protein oxidation, and NADPH oxidase activity. However, these increases were lower in A. laxa compared to N. muscorum. To mitigate the impact of Al stress, A. laxa induced its antioxidant defense system by increasing polyphenols, flavonoids, tocopherols and glutathione levels as well as peroxidase (POX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) enzymes activities. On the other hand, the antioxidant increases in N. muscorum were only limited to ascorbate (ASC) cycle. Overall, high biosorption/uptake capacity and efficient antioxidant defense system of A. laxa recommend its feasibility in the treatment of Al contaminated waters/soils.
Show more [+] Less [-]