Refine search
Results 1371-1380 of 1,966
Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation Full text
2013
Sinkkonen, Aki | Kauppi, Sari | Simpanen, Suvi | Rantalainen, Anna-Lea | Strömmer, Rauni | Romantschuk, Martin
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g⁻¹, or moderate, ca. 20 μg g⁻¹) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.
Show more [+] Less [-]Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA–alginate matrix: equilibrium isotherms and kinetic studies Full text
2013
Rawat, Monica | Rawat, A. P. | Giri, Krishna | Rai, J. P. N.
Chromate-resistant bacterial strain isolated from the soil of tannery was studied for Cr(VI) bioaccumulation in free and immobilised cells to evaluate its applicability in chromium removal from aqueous solution. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, this strain was identified as Paenibacillus xylanilyticus MR12. Mechanism of Cr adsorption was also ascertained by chemical modifications of the bacterial biomass followed by Fourier transform infrared spectroscopy analysis of the cell wall constituents. The equilibrium biosorption analysed using isotherms (Langmuir, Freundlich and Dubinin–Redushkevich) and kinetics models (pseudo-first-order, second-order and Weber–Morris) revealed that the Langmuir model best correlated to experimental data, and Weber–Morris equation well described Cr(VI) biosorption kinetics. Polyvinyl alcohol alginate immobilised cells had the highest Cr(VI) removal efficiency than that of free cells and could also be reused four times for Cr(VI) removal. Complete reduction of chromate in simulated effluent containing Cu²⁺, Mg²⁺, Mn²⁺ and Zn²⁺ by immobilised cells, demonstrated potential applications of a novel immobilised bacterial strain MR12, as a vital bioresource in Cr(VI) bioremediation technology.
Show more [+] Less [-]Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage Full text
2013
Çabuk, Ahmet | Aytar, Pınar | Gedikli, Serap | Özel, Yasemin Kevser | Kocabıyık, Erçin
Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.
Show more [+] Less [-]Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies Full text
2013
Jadhav, Shekhar B. | Patil, Nilambari S. | Watharkar, Anuprita D. | Apine, Onkar A. | Jadhav, Jyoti P.
Bacterium Pseudomonas aeruginosa BCH was able to degrade naphthylaminesulfonic azo dye Amaranth in plain distilled water within 6 h at 50 mg l⁻¹ dye concentration. Studies were carried out to find the optimum physical conditions and which came out to be pH 7 and temperature 30 °C. Amaranth could also be decolorized at concentration 500 mg l⁻¹. Presence of Zn and Hg ions could strongly slow down the decolorization process, whereas decolorization progressed rapidly in presence of Mn. Decolorization rate was increased with increasing cell mass. Induction in intracellular and extracellular activities of tyrosinase and NADH-DCIP reductase along with intracellular laccase and veratryl alcohol oxidase indicated their co-ordinate action during dye biodegradation. Up-flow bioreactor studies with alginate immobilized cells proved the capability of strain to degrade Amaranth in continuous process at 20 ml h⁻¹ flow rate. Various analytical studies viz.—HPLC, HPTLC, and FTIR gave the confirmation that decolorization was due to biodegradation. From GC-MS analysis, various metabolites were detected, and possible degradation pathway was predicted. Toxicity studies carried out with Allium cepa L. through the assessment of various antioxidant enzymes viz. sulphur oxide dismutase, guaiacol peroxidase, and catalase along with estimation of lipid peroxidation and protein oxidation levels conclusively demonstrated that oxidative stress was generated by Amaranth.
Show more [+] Less [-]Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater Full text
2013
Dellai, Afef | Dridi, Dorra | Lemorvan, Valerie | Robert, Jacques | Cherif, Ameur | Mosrati, Ridha | Mansour, Hedi Ben
The textile industry is a favor to the Tunisian economy by offering several job positions. However, it's not environmentally friendly. In fact, textile industries discharge high volumes of wastewater which contain several toxic pollutants such as dyes, fixator, and whiteness. In our study, Pseudomonas peli, isolated and characterized from Oued Hamdoun (center of Tunisia), was found able to decolorize textile effluent about 81 % after 24 h shaking incubation. On the other hand, the in vitro antiproliferative effects of the untreated and treated effluent was evaluated by their potential cytotoxic activity using the MTT colorimetric method against three human cancer cell lines (A549, lung cell carcinoma; HT29, colon adenocarcinoma; and MCF7, breast adenocarcinoma). Results showed that intact textile effluent and its content azo dyes didn't inhibit the proliferation of all tested cell lines. However, the cytotoxic effect was remarkable when we tested effluent obtained after treatment by P. peli in a dose-dependent manner. This activity was attributed to the presence, in our treated effluent, of some azo products of dyes which are responsible for inhibition of human cell lines proliferation. Thus, the use of this strain for testing on the industrial scale seems impossible and disadvantageous.
Show more [+] Less [-]Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents Full text
2013
Awual, M Rabiul | Hossain, M Amran | Shenashen, M. A. | Yaita, Tsuyoshi | Suzuki, Shinichi | Jyo, Akinori
Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250–350 h⁻¹. Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.
Show more [+] Less [-]Bioremoval of diethylketone by the synergistic combination of microorganisms and clays: uptake, removal and kinetic studies Full text
2013
Quintelas, Cristina | Costa, Filomena | Tavares, Teresa
The performance of two bacteria, Arthrobacter viscosus and Streptococcus equisimilis, and the effect of the interaction of these bacteria with four different clays on the retention of diethylketone were investigated in batch experiments. The uptake, the removal percentages and the kinetics of the processes were determined. S. equisimilis, by itself, had the best performance in terms of removal percentage, for all the initial diethylketone concentrations tested: 200, 350 and 700 mg/L. The uptake values are similar for both bacteria. A possible mechanism to explain the removal of diethylketone includes its degradation by bacteria, followed by the adsorption of the intermediates/sub-products by the functional groups present on the cells' surfaces. The assays performed with bacteria and clays indicated that the uptake values are similar despite of the clay used, for the same microorganism and mass of clay, but in general, higher values are reached when S. equisimilis is used, compared to A. viscosus. Kinetic data were described by pseudo-first- and pseudo-second-order models.
Show more [+] Less [-]Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy Full text
2013
Zhou, Ming | Zhu, Shufa | Liu, Yana | Wang, Xuejian
Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3 %, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.
Show more [+] Less [-]Biological response of high-back crucian carp (Carassius auratus) during different life stages to wastewater treatment plant effluent Full text
2013
Wang, Renmin | Liu, Jingliang | Yang, Xiaoxia | Lin, Zhan | Huang, Bin | Jin, Wei | Pan, Xuejun
This study presents the adverse effects of endocrine disrupting chemicals (EDCs) in effluent of wastewater treatment plants (WwTPs) on fish health. A study of chronic exposure to WwTPs effluent for 10 months was undertaken in high-back crucian carp (Carassius auratus) during different life stages, covering early-life-stage (ELS), prespawning period, and postspawning period. Condition factor (CF), gonadosomatic index (GSI), hepatosomatic index (HSI), and plasma vitellogenin (VTG) levels were employed as indicators to assess biological effects of effluent on this gynogenesis species. Meanwhile, some high-back crucian carp were caged in Demonstration Base of Biological Purification for Filter-feeding Fish (hereinafter, Demonstration Base), as WwTPs effluent exposure controls. In the meantime, a depuration study was carried out to determine whether or not the estrogenic effects caused by effluent exposure could be reduced after moving fish into EDCs-free water. CF, HSI, GSI, and plasma Vtg levels of high-back crucian carp caged in Demonstration Base were generally in accordance with seasonal change. Effluent exposure inhibited gonadal growth, reducing GSI in ELS while increasing it around spawning, sharpened liver burdens, increasing HSI, and induced abnormal Vtg expression in juvenile high-back crucian carp, augmenting Vtg concentrations in plasma. Around spawning period, Vtg in high-back crucian carp were mainly induced by endogenous estrogens, and EDCs in effluent had less influence on them. Staying in EDCs-free water for 30 days made high-back crucian carp recover from effects of previous effluent exposure, relieving inhibition of gonadal development and hypertrophy of liver as well as reducing Vtg induced by EDCs in effluent. The results revealed that high-back crucian carp in ELS are more sensitive to WwTPs effluent exposure. Additionally, the depuration study showed a clearance of the estrogenic effects caused by effluent.
Show more [+] Less [-]Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha) Full text
2013
Fernández-Sanjuan, María | Faria, Melissa | Lacorte, Silvia | Barata, Carlos
Perfluorinated chemicals (PFCs) have been used for many years in numerous industrial products and are known to accumulate in organisms. A recent survey showed that tissue levels of PFCs in aquatic organisms varied among compounds and species being undetected in freshwater zebra mussels Dreissena polymorpha. Here we studied the bioaccumulation kinetics and effects of two major PFCs, perfluorooctane sulfonic acid compound (PFOS) and perfluorooctanoic acid (PFOA), in multixenobiotic transporter activity (MXR) and filtration and oxygen consumption rates in zebra mussel exposed to a range of concentrations of a PCF mixture (1–1,000 μg/L) during 10 days. Results indicate a low potential of the studied PFCs to bioaccumulate in zebra mussel tissues. PFCs altered mussel MXR transporter activity being inhibited at day 1 but not at day 10. Bioaccumulation kinetics of PFCs were inversely related with MXR transporter activity above 9 ng/g wet weight and unrelated at tissue concentration lower than 2 ng/g wet weight suggesting that at high tissue concentrations, these type of compounds may be effluxed out by MXR transporters and as a result have a low potential to be bioaccumulated in zebra mussels. Oxygen consumption rates but not filtering rates were increased in all exposure levels and periods indicating that at environmental relevant concentrations of 1 μg/L, the studied PFCs enhanced oxidative metabolism of mussels. Overall, the results obtained in this study confirm previous findings in the field indicating that an important fraction of PFC accumulated in mussel tissues is eliminated actively by MXR transporters or other processes that are metabolically costly.
Show more [+] Less [-]