Refine search
Results 1371-1380 of 3,208
The Influence of Oceanic Air Masses on Concentration of Major Ions and Trace Metals in PM2.5 Fraction at a Coastal European Suburban Site Full text
2015
Moreda-Piñeiro, Jorge | Turnes-Carou, Isabel | Alonso-Rodríguez, Elia | Moscoso-Pérez, Carmen | Blanco-Heras, Gustavo | López-Mahía, Purificación | Muniategui-Lorenzo, Soledad | Prada-Rodríguez, Darío
A comprehensive chemical characterisation of the ionic and metallic composition of PM₂.₅fraction of suburban aerosol collected with high‐volume aerosol samplers at a coastal suburban site of northwest Atlantic European is studied over a 1.5-year period (from March 2011 to August 2012). The monthly mean PM₂.₅mass concentrations (after gravimetric measurement) ranged from 13 to 26 μg m⁻³. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in PM₂.₅fraction after acid extraction (total metallic concentration) and after sonication-assisted water extraction (aqueous soluble fraction). Major inorganic ions (Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, Mg²⁺, NH₄⁺and C₂O₄²⁻) were also analysed in the aqueous fraction of PM₂.₅. Trace metal extractability in water was in the range 50–67 % with exception of Al (∼2 %), Fe (∼4 %) and Cr (∼18 %). After univariate, cluster (CA) and principal component (PCA) analyses and air mass backward trajectory analysis, marine, crustal and anthropogenic (including road traffic) sources were found for the inorganic composition of PM₂.₅. Results also suggest a great influence of cleaner Atlantic air masses and ubiquitous sources for K⁺, Mg²⁺, Fe, Ni and V.
Show more [+] Less [-]Pathogen Inactivation and the Chemical Removal of Phosphorus from Swine Wastewater Full text
2015
Viancelli, A. | Kunz, A. | Fongaro, G. | Kich, J. D. | Barardi, C. R. M. | Suzin, L.
Inactivation of pathogens present in animal manure prior to land application has justified the use of advanced technologies. However, some alternatives are expensive or not effective due to the organic material and suspended solids present in the effluent (e.g., ozone, UV light). The use of hydrated lime (calcium hydroxide, Ca(OH)₂) is an attractive wastewater treatment option due to the ability of lime to kill pathogens and to extract phosphorus from manure at an alkaline pH. The present study aimed to evaluate the soluble phosphorus removal and pathogen inactivation (Escherichia coli, Salmonella enterica serovar typhymurium and Porcine circovirus type 2), in the liquid fraction and in the solid generated after Ca(OH)₂ addition in swine wastewater, exposed for 3 and 24 h at different pH conditions: 9.0, 9.5, and 10.0. The results showed the efficiency of pH elevation with Ca(OH)₂ in the removal of soluble P at pH 9.0 and the total inactivation of E. coli, Salmonella, and P. circovirus type 2 at pH 10.0. The liquid fraction (reuse water) could be safely used for cleaning the swine production facilities, and the solid fraction (precipitated P) could be used as a secondary product and fertilizer.
Show more [+] Less [-]Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils Full text
2015
Choppala, Girish | Bolan, Nanthi | Kunhikrishnan, Anitha | Skinner, William | Seshadri, Balaji
In this study, two carbon materials [chicken manure biochar (CMB) and black carbon (BC)] were investigated for their effects on the reduction of hexavalent chromium [Cr(VI)] in two spiked [600 mg Cr(VI) kg⁻¹] and one tannery waste contaminated [454 mg Cr(VI) kg⁻¹] soils. In spiked soils, both the rate and the maximum extent of reduction of Cr(VI) to trivalent Cr [Cr(III)] were higher in the sandy loam than clay soil, which is attributed to the difference in the extent of Cr(VI) adsorption between the soils. The highest rate of Cr(VI) reduction was observed in BC-amended sandy loam soil, where it reduced 452 mg kg⁻¹ of Cr(VI), followed by clay soil (427 mg kg⁻¹) and tannery soil (345 mg kg⁻¹). X-ray photoelectron microscopy confirmed the presence of both Cr(VI) and Cr(III) species in BC within 24 h of addition of Cr(VI), which proved its high reduction capacity. The resultant Cr(III) species either adsorbs or precipitates in BC and CMB. The addition of carbon materials to the tannery soil was also effective in decreasing the phytotoxicity of Cr(VI) in mustard (Brassica juncea L.) plants. Therefore, it is concluded that the addition of carbon materials enhanced the reduction of Cr(VI) and the subsequent immobilization of Cr(III) in soils.
Show more [+] Less [-]Contribution of Coagulation–Flocculation Process for a More Sustainable Pig Slurry Management Full text
2015
Fragoso, R. A. | Duarte, E. A. | Paiva, J.
This paper aims to demonstrate the benefits of using a natural coagulant to enhance gravitational sedimentation of pig slurry. The separation process would lead to a liquid fraction, more biodegradable and with lower nutrient content, and a solid fraction highly concentrated in organic matter. Experimental trials were conducted in order to achieve the following objectives: (i) compare the effect of gravitational sedimentation with coagulation–flocculation process, (ii) compare the efficiency of conventional coagulants (such as aluminium sulphate or ferric chloride) with chitosan biopolymer and (iii) test the optimum coagulation–flocculation operational conditions to slurry sample. Assessment criteria included removal efficiencies but also took into consideration the advantages/disadvantages regarding sludge management. Results showed that gravitational sedimentation process can be improved by addition of coagulants; turbidity and COD removal increased around 2 and 3 times, respectively.
Show more [+] Less [-]Optimization, Kinetics, Isotherms, and Thermodynamics Studies of Antimony Removal in Electrocoagulation Process Full text
2015
Song, Peipei | Yang, Zhaohui | Zeng, Guangming | Yang, Xia | Xu, Haiyin | Huang, Jing | Wang, Like
In this study, electrocoagulation (EC) with hybrid Fe–Al electrodes was used to remove antimony from contaminated surface water. Response surface methodology was applied to investigate the interactive effects of the operating parameters on antimony removal and optimize these variables. Results showed that the relationship between operating parameters and the response was well described by a second-order polynomial equation. Under the optimal conditions of current density 2.58 mA/cm², pH 5.24, initial concentration 521.3 μg/L, and time 89.17 min, more than 99 % antimony were removed. Besides, the antimony adsorption behavior in EC process was also investigated. Adsorption kinetics and isotherms studies suggested that the adsorption process followed well the pseudo-second-order kinetic model and the Langmuir adsorption model, respectively. Adsorption thermodynamics study revealed that the reaction was spontaneous, endothermic, and thermodynamically favorable. These results further proved that the main mechanism involved in antimony removal in EC process could be chemisorption.
Show more [+] Less [-]Adsorption of Cs from Water on Surface-Modified MCM-41 Mesosilicate Full text
2015
Guo, Kai | Han, Fengxiang | Arslan, Zikri | McComb, Jacqueline | Mao, Xinyu | Zhang, Rong | Sudarson, Sinha | Yu, Hongtao
Cs is a common radionuclide present in nuclear wastes and released from nuclear power plant accidents. It is hard to be removed from water with traditional technology. The current study aimed at developing of efficient cost-effective adsorbent for removing Cs with modified MCM-41 with specific functional groups –SH. Mesoporous material MCM-41 was selected due to its large surface area and tunable pore structure. Functional –SH groups were grafted into the pores of MCM-41 to enhance its capability of selective adsorption of Cs from multi-element (Co, Sr) water solution. The adsorption results showed that the maximum adsorption capacity was 29.24 mg/g. Both Langmuir and Freundlich models described the adsorption processes of Cs, indicating co-existence of both monolayer and multilayer adsorption in the surface and inner pores of the materials. TEM, FTIR, and Raman spectroscopy analyses indicated that –SH groups were successfully bounded into the pores of MCM-41. The present study approved the surface functional modified MCM-41 which might be a good alternative candidate for cleaning up of radionuclide Cs from nuclear power plant accidents and relevant nuclear accident events.
Show more [+] Less [-]Effect of Biochar in Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain Deposition and Aging Full text
2015
Lu, H. | Li, Z. | Fu, S. | Méndez, A. | Gascó, G. | Paz-Ferreiro, J.
Acidic deposition is a worldwide problem that often leads to the increase in soil available heavy metals. Liming and biochar can both raise soil pH and immobilize heavy metals. An experiment was conducted in the laboratory to study the effects of acidic deposition on soil Cd mobility and soil biological activity in a soil polluted with Cd. Biochar, prepared from poultry litter biochar (PLB) or eucalyptus biochar (EB) was added at a rate of 3 %. Liming controls, bringing the soil to the same pH as that attained with biochar, were also used. The experimental results showed a higher risk of Cd leaching and impaired biological properties under simulated acid rain. Biochar addition resulted in a reduction in the risk of leaching and in improved biological properties and could provide benefits over liming for the management of soil polluted with heavy metals, especially in areas affected by acidic deposition.
Show more [+] Less [-]High Voltage Electrochemiluminescence (ECL) as a New Method for Detection of PAH During Screening for PAH-Degrading Microbial Consortia Full text
2015
Staninska, Justyna | Szczepaniak, Zuzanna | Staninski, Krzysztof | Czarny, Jakub | Piotrowska-Cyplik, Agnieszka | Nowak, Jacek | Marecik, Roman | Chrzanowski, Łukasz | Cyplik, Paweł
The search for new bacterial consortia capable of removing PAH from the environment is associated with the need to employ novel, simple, and economically efficient detection methods. A fluorimetric method (FL) as well as high voltage electrochemiluminescence (ECL) on a modified surface of an aluminum electrode were used in order to determine the changes in the concentrations of PAH in the studied aqueous solutions. The ECL signal (the spectrum and emission intensity for a given wavelength) was determined with the use of an apparatus operating in single photon counting mode. The dependency of ECL and FL intensity on the concentration of naphthalene, phenanthrene, and pyrene was linear in the studied concentration range. The biodegradation kinetics of the particular PAH compounds was determined on the basis of the obtained spectroscopic determinations. It has been established that the half-life of naphthalene, phenanthrene, and pyrene at initial concentrations of 50 mg/l (beyond the solubility limit) reached 41, 75, and 130 h, accordingly. Additionally, the possibility of using ECL for rapid determination of the soluble fraction of PAH directly in the aqueous medium has been confirmed. Metagenomic analysis of the gene encoding 16S rRNA was conducted on the basis of V4 hypervariable region of the 16S rRNA gene and allowed to identify 198 species of bacteria that create the S4consortium. The consortium was dominated by Gammaproteobacteria (78.82 %), Flavobacteria (9.25 %), Betaproteobacteria (7.68 %), Sphingobacteria (3.76 %), Alphaproteobacteria (0.42 %), Clostridia (0.04 %), and Bacilli (0.03 %).
Show more [+] Less [-]Removal of Dissolved Organic Carbon from Oily Produced Water by Adsorption onto Date Seeds: Equilibrium, Kinetic, and Thermodynamic Studies Full text
2015
Al.Haddabi, Mansour | Vuthaluru, Hari | Znad, Hussein | Ahmed, M. (Mushtaque)
The feasibility of date seeds as a new low-cost natural adsorbent for the removal of dissolved organic carbon (DOC) from oily produced water was investigated. The aim of this study was to elucidate the mechanism associated with the removal of DOC and to find the best equilibrium isotherms and kinetic models for DOC removal in batch adsorption experiments. The effect of various physicochemical parameters such as initial DOC concentration (18.5–93.5 mg/L), solution pH (4–9), temperature (25–45 °C), and date seeds dosages (0.5–2.0 g) was evaluated. The equilibrium stage was attained after a contact time of 120 min. The maximum DOC removal was 82 % for 93.5 mg/L of DOC concentration. The equilibrium data were well represented by the Langmuir isotherm. The maximum monolayer adsorption capacity of date seeds was found to be 74.62 mg/g. The separation factor, R L, from the Langmuir equation and the Freundlich constant, n, indicated a favorable adsorption. The kinetic studies indicated that the adsorption process follows the pseudo-second-order kinetics. The adsorption of DOC is governed by both surface and pore diffusion. The results revealed that the DOC uptake decreases when temperature and pH increases. The adsorption process has been found exothermic in nature, and the thermodynamic parameters were determined. The Langmuir isotherm model equation was adopted to design a single-stage batch absorber for DOC adsorption onto date seeds. The study demonstrated that date seeds can be considered as a promising low-cost adsorbent for the removal of DOC from oily produced water.
Show more [+] Less [-]Depletion of Pentachlorophenol Contamination in an Agricultural Soil Treated with Byssochlamys nivea, Scopulariopsis brumptii and Urban Waste Compost: A Laboratory Microcosm Study Full text
2015
Bosso, Luciano | Scelza, Rosalia | Testa, Antonino | Cristinzio, Gennaro | Rao, Maria Antonietta
Pentachlorophenol (PCP) has been used worldwide as a wood treatment agent and biocide. Its toxicity and extensive use have placed it among the most hazardous environmental pollutants. The response of a PCP-contaminated agricultural soil to the addition of solid urban waste compost and two exogenous Ascomycota fungal strains Byssochlamys nivea and Scopulariopsis brumptii was evaluated. The experiments were conducted in soil microcosms incubated for 28 days at 25 °C and 60 % moisture content. The depletion of PCP and the changes in biochemical soil properties (i.e. microbial biomass, soil respiration, dehydrogenase and fluorescein diacetate hydrolysis activities) were detected. The addition of PCP severely depressed some of the tested biochemical properties such as microbial biomass, dehydrogenase and fluorescein diacetate hydrolysis activities. By contrast, compost limited the negative effect of PCP on the dehydrogenase activity and soil respiration. When compost and fungal strains were contemporary present, a synergistic effect was observed with a reduction of more than 95 % of the extractable PCP after 28 days of incubation. No differences in PCP depletion resulted when fungi or compost were individually used. Our results indicate that many processes (i.e. microbial degradation and sorption to organic matter) likely occurred when PCP was added to the soil. The compost and the fungal strains, B. nivea and S. brumptii, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.
Show more [+] Less [-]