Refine search
Results 1371-1380 of 7,288
Varroa mite and deformed wing virus infestations interactively make honey bees (Apis mellifera) more susceptible to insecticides Full text
2022
Zhu, Yu-Cheng | Yao, Jianxiu | Wang, Yanhua
Varroa mite is one of the major adverse factors causing honey bee population decline. In this study, Varroa destructor-infested and uninfested honey bee colonies were established by selective applying miticide (Apivar® amitraz). Mite population was monitored monthly (April–October 2016), and deformed wing virus (DWV) loading was detected seasonally (April, July, and October). Four immunity- and two physiology-related gene expressions, natural mortality, and susceptibility to five insecticides were comparatively and seasonally examined in field-collected honey bee workers. Results showed that Apivar-treated bee colonies had minor or undetectable mite and DWV (using RT-qPCR) infestations in whole bee season, while untreated colonies had substantially higher mite and DWV infestations. In untreated colonies, Varroa mite population irregularly fluctuated over the bee season with higher mite counts in Jun (318 ± 89 mites dropped in 48 h) or August (302) than that (25 ± 4 or 34) in October, and mite population density was not dynamically or closely correlated with the seasonal shift of honey bee natural mortality (regression slope = −0.5212). Unlike mite, DWV titer in untreated colonies progressively increased over the bee season, and it was highly correlated (R² = 1) with the seasonal increase of honey bee natural mortality. Significantly lower gene expressions of dor, PPO, mfe, potentially PPOa and eat as well, in untreated colonies also indicated an association of increased DWV infestation with decreased physiological and immunity-related functions in late-season honey bees. Furthermore, bees with lower mite/DWV infestations exhibited generally consistently lower susceptibilities (contact and oral toxicities) to five representative insecticides than the bees without Apivar treatment. All of these data from this study consistently indicated an interaction of Varroa/viral infestations with insecticide susceptibilities in honey bees, potentially through impairing bee's physiology and immunity, emphasizing the importance of mite control in order to minimize honey bee decline.
Show more [+] Less [-]Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review Full text
2022
Velusamy, Karthik | Chellam, PadmanabanVelayudhaperumal | Kumar, P Senthil | Venkatachalam, Jeyamanikandan | Periyasamy, Selvakumar | Saravanan, R.
The increased industrialization and urbanization generate a larger quantity of effluent that is discharged into the environment regularly. Based on the effluent composition produced from various industries, the number of hazardous substances such as heavy metals, hydrocarbons, volatile organic compounds, organic chemicals, microorganisms introduced into the aquatic systems vary. The conventional wastewater treatment systems do not meet the effluent standards before discharge and require a different treatment system before reuse. Adsorption is an eco-friendly technique that uses selective adsorbents to remove hazardous pollutants even at microscale levels. MXene, a 2-Dimensional nanomaterial with resplendent properties like conductivity, hydrophilicity, stability, and functionalized surface characteristics, is found as a potential candidate for pollutant removal systems. This review discusses the fabrication, characterization, and application of MXene based nanoparticles to remove many pollutants in water treatment systems. The improvement in surface properties and adsorption capacity of MXene based NPs, when modified using different modification agents, has also been discussed. Their feasibility in terms of economic and environmental aspects has been evaluated to understand their scope for practical application in large-scale industries. The challenges towards the synthesis and toxicity's importance have been discussed, with the appropriate recommendations.
Show more [+] Less [-]Characterization and biodegradability assessment of water-soluble fraction of oily sludge using stir bar sorptive extraction and GCxGC-TOF MS Full text
2022
Chand, Priyankar | Dutta, Suryendu | Mukherji, Suparna
Percolation of water through oily sludge during storage and handling of the sludge can cause soil and groundwater contamination. In this study, oily sludge from a refinery was equilibrated with water to obtain the water-soluble fraction (WSF) of oily sludge. The WSF had dissolved organic carbon (DOC) of 166 mg/L. Human cell line-based toxicity assay revealed IC₅₀ of 41 mg/L indicating its toxic nature. The predominant compounds in WSF of oily sludge included isomers of methyl, dimethyl and trimethyl quinolines and naphthalenes along with phenol derivatives and other polynuclear aromatic hydrocarbons (PAHs). Biodegradation of WSF of oily sludge was studied using a consortium of Rhodococcus ruber, Bacillus sp. and Bacillus cereus isolated from the refinery sludge. The consortium of the three strains resulted in 70% degradation over 15 days with a first-order degradation rate of 0.161 day⁻¹. Further analysis of the WSF was performed using the stir-bar sorptive extraction (SBSE) followed by GCxGC-TOF MS employing a PDMS Twister. The GCxGC analysis showed that Bacillus cereus was capable of degrading the quinoline, phenol and naphthalene derivatives in WSF of oily sludge at a faster rate compared to pyridine and benzoquinoline derivatives. Quinoline, phenol, biphenyl, naphthalene, pyridine and benzoquinolines derivatives in the WSF of oily sludge were reduced by 87%, 92%, 88%, 77%, 40% and 62%, respectively with respect to the controls. The WSF of oily sludge contained, n-alkanes, ranging from n-C12 to n-C18 which were removed within 2 days of biodegradation.
Show more [+] Less [-]Associations between prenatal exposure to perfluoroalkyl substances, hypomethylation of MEST imprinted gene and birth outcomes Full text
2022
Ku, Mei-Sheng | Pan, Wen-Chi | Huang, Yen-Tsung | Hsieh, Wu-Shiun | Hsu, Yi-Hsiang | Chen, Pau-Chung | Liu, Zhenyu
Prenatal perfluoroalkyl substance (PFAS) exposure has been linked to adverse birth outcomes, but the underlying mechanism has yet to be elucidated. DNA methylation changes in mesoderm-specific transcript (MEST) imprinted gene may be a mechanism of the prenatal exposure effects of PFASs on fetal growth. The aim was to investigate the prenatal PFASs exposure effects on DNA methylation changes in MEST imprinted gene involved in fetal growth. Among 486 mother-infant pairs from the Taiwan Birth Panel Study, PFASs and DNA methylation levels at 5 CpG sites of MEST promoter region were measured in cord blood. Univariable and multivariable linear regressions were performed to estimate the associations between prenatal PFAS exposure, MEST DNA methylation levels, and child birth outcomes. Mediation analysis was performed to examine the potential pathway of MEST methylation between PFASs and birth outcomes. We found that higher prenatal perfluorooctyl sulfonate (PFOS) exposure was significantly associated with lower methylation levels at 5 CpG sites of MEST promoter region (an adjusted β range: −1.56, −2.22). Significant negative associations were also found between MEST methylation levels and child birth weight. Furthermore, the associations between PFOS and perfluorooctanoic acid (PFOA) exposure and MEST methylation levels were more profound in girls than in boys. The mediated effect of average MEST methylation level between PFOS exposure and birth weight was 18.3 (95% CI = 2.1, 40.2; p = 0.014). The direct effect of PFOS exposure to birth weight independent to average MEST methylation level was −93.2 (95% CI = −170.5, −17.8; p = 0.018). In conclusion, our results suggest that prenatal PFAS exposure, especially PFOS, is associated with lower methylation levels at MEST promoter region, which not only leverages the role of imprinted gene in ensuring the integrity of fetal growth but also provides a potential mechanism for evaluating the prenatal exposure effect.
Show more [+] Less [-]Will open waste burning become India's largest air pollution source? Full text
2022
Sharma, Gaurav | Annadate, Saurabh | Sinha, Baerbel
India struggles with frequent exceedances of the ambient air quality standard for particulate matter and benzene. In the past two decades, India has made considerable progress in tackling indoor air pollution, by phasing out kerosene lamps, and pushing biofuel using households towards Liquefied Petroleum Gas (LPG) usage. In this study, we use updated emission inventories and trends in residential fuel consumption, to explore changes in the contribution of different sectors towards India's largest air pollution problem. We find that residential fuel usage is still the largest air pollution source, and that the <10% households using cow dung as cooking fuel contribute ∼50% of the residential PM₂.₅ emissions. However, if current trends persist, residential biofuel usage in India is likely to be phased out by 2035. India's renewable energy policies are likely to reduce emissions in the heat and electricity sector, and manufacturing industries, in the mid-term. PM₂.₅ emissions from open waste burning, on the other hand, hardly changed in the decade from 2010 to 2020. We conclude that without strong policies to promote recycling and upcycling of non-biodegradable waste, and the conversion of biodegradable waste to biogas, open waste burning is likely to become India's largest source of air pollution by 2035. While our study is limited to India, our findings are of relevance for other countries in the global South suffering from similar waste management challenges.
Show more [+] Less [-]Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils Full text
2022
Tang, Wantong | Wang, Guiyin | Zhang, Shirong | Li, Ting | Xu, Xiaoxun | Deng, Ouping | Luo, Ling | He, Yan | Zhou, Wei
Rare earth elements inevitably release into the soil due to their widespread application. However, it is unclear how they affect the soil animals. The study surveyed the growth and physiological responses of earthworm (Eisenia fetida) exposed into artificial soils spiked with La, Ce, and their mixture, and actual mine soil collected from an abandoned La–Ce mining area (Mianning, Sichuan). The results showed that the 1000–1200 mg/kg combined exposure in two soils induced significant histopathological and phenotypic changes of earthworms. Concentration significantly affected the superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and protein of E. fetida and the effects differentiated with the prolonging duration. These indicators were negatively affected under the La stress ≥800 mg/kg (SOD, POD, and protein), the 1200 mg/kg (SOD), Ce stress ≥1000 mg/kg (protein), and the combination ≥800 mg/kg (SOD, POD) and ≥1000 mg/kg (protein). Artificial combination had −15.04% (SOD), 8.87% (POD), 5.64% (MDA), and −8.34% (protein) difference compared with the contamination soil, respectively. Overall, E. fetida respond sensitively under the La and Ce stress, the antioxidant defense system and the lipid peroxidation were stimulated, and the artificial soil might overestimate eco-toxicological effect.
Show more [+] Less [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters Full text
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
Show more [+] Less [-]Microplastics impact shell and pearl biomineralization of the pearl oyster Pinctada fucata Full text
2022
Han, Zaiming | Jiang, Taifeng | Xie, Liping | Zhang, Rongqing
Microplastics are extremely widespread aquatic pollutants that severely detriment marine life. In this study, the influence of microplastics on biomineralization was investigated. For the first time, multiple forms and types of microplastics were detected and isolated from the shells and pearls of Pinctada fucata. According to the present study, the abundance of microplastics in shells and pearls was estimated at 1.95 ± 1.43 items/g and 0.53 ± 0.37 items/g respectively. Interestingly, microplastics were less abundant in high-quality round pearls. Microplastics may hinder the growth of calcite and aragonite crystals, which are crucial components required for shell formation. During the process of biomineralization microplastics became embedded in shells, suggesting the existence of a novel pathway by which microplastics accumulate in bivalves. After a 96-h exposure to microplastics, the expression level of typical biomineralization-related genes increased, including amorphous calcium carbonate binding protein (ACCBP) gene which experienced a significant increase. ACCBP promotes the formation of amorphous calcium carbonate (ACC), which is the pivotal precursor of shell formation-related biominerals. ACCBP is highly expressed during the developmental stage of juvenile oysters and the shell-damage repair process. The increased expression of ACCBP suggests biomineralization is enhanced as a result of microplastics exposure. These results provide important evidence that microplastics exposure may impact the appearance of biominerals and the expression of biomineralization-related genes, posing a new potential threat to aquatic organisms.
Show more [+] Less [-]Polystyrene microplastic particles: In vivo and in vitro ocular surface toxicity assessment Full text
2022
Zhou, Xiaoping | Wang, Guoliang | An, Xiaoya | Wu, Jun | Fan, Kai | Xu, Lina | Li, Cheng | Xue, Yuhua
Microplastics (MPs) have become a global concern as a key environmental pollutant. MPs are widely found in oceans, rivers, bottled water, plastic-packaged foods, and toiletries. The ocular surface is the exposed mucosal tissue, which comes in contact with MP particles contained in toiletries, tap water, cosmetics, and air. However, the effects of MPs on ocular surface health are still unclear. In this study, the toxic effects of polystyrene MPs (PS-MPs) on the ocular surface in vivo and in vitro were explored. The results demonstrated that 50 nm or 2 μm PS-MPs, following exposure for 48 h appeared in the cytoplasm of two kinds of eye cells in vitro and caused a concentration dependent reduction in cell viability, further causing oxidative stress and cell apoptosis. In addition, after treatment for 2 or 4 weeks, 50 nm and 2 μm PS-MPs were deposited in the conjunctival sac of mice. After 2 and 4 weeks of PS-MP treatment, the number of goblet cells in the lower eyelid conjunctival sac decreased to 65% and 40% of that in the control group, respectively. Moreover, dry eye like ocular surface damage and inflammation of conjunctiva and lacrimal gland in mice were observed. In conclusion, this study revealed that PS-MPs could cause ocular surface dysfunctions in mice, thus providing a new perspective for the toxic effects of MPs on ocular surface.
Show more [+] Less [-]Evaluating the applicability of the ratio of PM2.5 and carbon monoxide as source signatures Full text
2022
Xiu, Meng | Jayaratne, Rohan | Thái Phong, | Christensen, Bryce | Zing, Isak | Liu, Xiaoting | Morawska, L. (Lidia)
Air pollution is among the top risk faced by people around the world, and therefore combating it is among the top priorities. It begins with identifying the sources that contribute the most to local air pollution to prioritize their control. There are advanced methods for source identification and apportionment, but such methods are not available in many low-income countries and not everywhere in all high-income countries. We propose a simplified method by using source the signatures to help obtain information about the local source contribution if no other methods are available. Using low-cost monitors, particle mass (PM₂.₅) and carbon monoxide (CO) concentrations were measured and the ratio of CO/PM₂.₅ was determined. We investigated outdoor and indoor sources, including vehicular exhaust, combustion of biomass, incense and mosquito coil burning, and cigarette smoking. The results show that the ratios differed significantly between certain pollutant sources. Compressed natural gas (CNG) engines have a high ratio (mean value of 972 ± 419), which is attributed to relatively low PM₂.₅ emissions, while ship emissions and cigarette smoke recorded a relatively low ratio. Most traffic emissions recorded higher ratios than those of bushfire emissions, and ratios of most outdoor pollutant sources were much higher than those of indoor pollutant sources. There is a clear trend for ratios to decrease from high to low for CNG, petrol, diesel for buses, and fuel for ships. Our results suggest that the ratio of CO/PM₂.₅ can be used as an effective method to identify pollution sources.
Show more [+] Less [-]