Refine search
Results 1391-1400 of 1,546
Bacterial community profiles from sediments of the Anacostia River using metabolic and molecular analyses Full text
2012
BACKGROUND AIM AND SCOPE: Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced. RESULTS: Employing Biolog EcoPlates, metabolic analysis of RE sediments from July revealed similar utilization of amines, amino acids, carbohydrates, carboxylic acids, and polymers at all sites. Normalized optical density measurements demonstrated that for most compounds, utilizations were similar though when differences did occur, the downstream site was enhanced compared to one or both of the upstream sites. Using denaturing gradient gel electrophoresis, bacterial diversity fingerprints of operational taxonomic units (OTUs) were obtained. Dendograms of the banding patterns revealed qualitative relationships as well as differences between replicate samples from similar sites. Replicates from the AR sites shared several common OTUs, while RE sites were more varied. Species richness and Shannon diversity indices generally increased with increasingly downstream locations, and were significant for the AR sediments (analysis of variance, P < 0.0001). Carbon and nitrogen content and concentration of fine grain sediment (<63 μm) were positively correlated with OTU richness (r 2 = 0.37, P = 0.0008; r 2 = 0.45, P < 0.0001; r 2 = 0.48, P = 0.001, respectively). CONCLUSIONS: This study demonstrated that the bacterial communities from all regions sampled were not only metabolically active with the capacity to utilize several different compounds as energy sources but also were genetically diverse. This study is the first to focus on the overall bacterial community, providing insight into this vital component of stream ecosystems. Understanding the bacterial components of aquatic systems such as the Anacostia River will increase our knowledge of the overall structure and function of the ecological communities in polluted systems, subsequently enhancing our ability to improve the health of this important tidal river.
Show more [+] Less [-]Evaluation of environmental impact produced by different economic activities with the global pollution index Full text
2012
Zaharia, Carmen
INTRODUCTION: The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). MATERIALS AND METHODS: The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I GP * ) for quantification of environmental impacts is applied. RESULTS AND DISCUSSION: Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ESi) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I GP * ). CONCLUSIONS: The I GP * values for each productive unit (i.e. 1.664–2.414) correspond to an ‘environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects’. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.
Show more [+] Less [-]Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye Full text
2012
Shih, Yang-hsin | Lin, Cheng-han
INTRODUCTION: Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water. METHODS: The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics. RESULTS: The increase of TiO2 dosage from 40 to 70 mg/L enhanced the degradation. At doses around 100 mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500 nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500 nm, the degradation rates were not significantly changed. CONCLUSIONS: For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.
Show more [+] Less [-]Establishing potential links between the presence of alkylphenolic compounds and the benthic community in a European river basin Full text
2012
Brix, Rikke | López-Doval, Julio | Ricart, Marta | Guasch, Helena | de Alda, Miren Lopez | Muñoz, Isabel | Orendt, Claus | Romaní i Cornet, Anna M. | Sabater, Sergi | Barceló, Damià
INTRODUCTION: Concentrations of alkylphenolic compounds (APCs) in water and sediments were related to the composition and functional descriptors of the benthic community (biofilm and macroinvertebrates). MATERIALS AND METHODS: Samples were collected in four sampling campaigns at seven sampling points in the lower Llobregat catchment area (NE Spain). Water and sediment samples underwent chemical target analysis for nine APCs, which are known to disrupt the endocrine system. RESULTS AND DISCUSSIONS: APCs were the main stressors on the diatom community but not on the macroinvertebrate community. CONCLUSIONS: Benthic invertebrates were mostly affected by the general physicochemical water characteristics (where conductivity was a surrogate). Nonylphenol only had an influence on the diatom community in water but not in the remaining compartments, probably because of the low concentrations observed in the environment.
Show more [+] Less [-]Geosmin degradation by seasonal biofilm from a biological treatment facility Full text
2012
Xue, Qiang | Shimizu, Kazuya | Sakharkar, Meena Kishore | Utsumi, Motoo | Cao, Gang | Li, Miao | Zhang, Zhenya | Sugiura, Norio
INTRODUCTION: Initial geosmin degradation was closely related to water temperature and natural geosmin concentration of sampling environment. Here, for the first time, we evaluated the biodegradation of geosmin by microorganisms in biofilm from biological treatment unit of actual potable water treatment plant. MATERIALS AND METHODS: At an initial geosmin concentration of 2,500 ng/l, efficient geosmin removal was confirmed throughout the year. Furthermore, in the presence of mixed musty odor compounds (geosmin and MIB) as carbon source, geosmin degradation was enhanced compared to sole carbon source (geosmin alone). RESULTS AND DISCUSSION: PCR-DGGE analysis revealed a rich community structure within the biofilm during rapid geosmin removal period, April. PCA revealed that the significant change in bacterial communities occurred from day 1 to day 2. Two novel geosmin-degrading bacteria were isolated from the biofilm of the biological treatment unit of Kasumigaura Water Purification, Waterworks Department, Japan. They belong to Methylobacterium sp. and Oxalobacteraceae bacterium, respectively. CONCLUSIONS: These studies provide further insights into the unknown microbiological processes that occur during the biological removal of geosmin through water treatment and could facilitate the geosmin bioremediation in contaminated habitats.
Show more [+] Less [-]Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation Full text
2012
Xu, Xiang-Yang | Feng, Li-Juan | Zhu, Liang | Xu, Jing | Ding, Wei | Qi, Han-Ying
BACKGROUND, AIM, AND SCOPE: The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. METHODS: The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement viadischarging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. RESULTS AND DISCUSSION: The pollutants removal performances became stable in the four reactors after 2 months’ operation, with ammonia nitrogen and permanganate index (CODMn) removal efficiencies of 84.41–94.21% and 69.66–76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. CONCLUSION: Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.
Show more [+] Less [-]Proteomic analysis of dimethoate-responsive proteins in the oyster (Saccostrea cucullata) gonad Full text
2012
Guo, Yan-Wei | Zhang, Yong | Huang, Xiang | Gao, Kun-Shan | Wang, Ke-Jian | Ke, Cai-Huan | Huang, He-Qing
INTRODUCTION: The organophosphorus pesticide dimethoate (DM) has been widely used in agriculture, and its extensive use could still have left many environmental problems. METHODS: In the present study, the oyster (Saccostrea cucullata) was subjected to acute DM toxicity (2 mg/L), and gas chromatographic analysis revealed and quantified residues of DM in the oyster gonad. RESULTS: Two-dimensional gel electrophoresis showed 12 differentially expressed proteins in the DM-exposed oyster gonad in comparison to the control. Among these 12 protein spots, nine were down-regulated, and three were up-regulated. Both matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching were utilized to identify these differential proteins, and revealed five proteins previously described as being related to DM toxicity. In addition, the levels of mRNA expression corresponding to these differential proteins were further proved in part by real-time PCR. The functions of these proteins were summarized as: carrying out energy metabolism, DNA repair, DNA transcriptional regulation, and oxidative protection. The remaining seven protein spots were of particular interest in terms of their responses to DM, which have seldom been reported. CONCLUSION: These data might point to a number of novel and significant biomarkers for evaluating the contamination levels of DM and provide useful insight into the mechanisms of DM toxicity in vivo.
Show more [+] Less [-]Risk posed by chlorinated organic compounds in Abu Qir Bay, East Alexandria, Egypt Full text
2012
Khairy, Mohammed Abd EL-Hamid | Kolb, Marit | Mostafa, Alaa R. | EL-Fiky, Anwar | Bahadir, M.
INTRODUCTION: In Egypt, the picture of threats to humans and the environment from the exposure to organic pollutants is still incomplete. Thus the objectives of this study were to assess the occurrence and distribution of polychlorinated biphenyls (PCBs), organochlorine pesticides, and chlorpyrifos in sediments and mussels of Abu Qir Bay and their risks for environment and human health. MATERIALS AND METHODS: Twenty-three different compounds organochlorines were determined in 20 surfacial sediment and 10 mussel samples by gas chromatography-electron capture detector. A Screening Level Ecological Risk Assessment (SLERA) and a Human Health Risk Assessment (HHRA) were performed with the data. RESULTS AND DISCUSSION: ΣDDT (DDT, DDE, DDD) (average concentration 27 µg/kg dw) dominated the detected organic pollutants in the sediments, followed by CHLs (chlordane, heptachlor, heptachloro epoxide), hexachlorocyclohexane, chlorpyrifos, endosulfane, dieldrine, Σ6 PCBs, aldrine, hexachlorobenzene, pentachlorobenzene, methoxychlor, and mirex. In general, concentrations of Σ6 PCBs in mussels were higher than their corresponding sediment concentrations reflecting their relatively high bioavailability and bioaccumulative potential. However, concentrations of the organochlorine pesticides in mussels were lower than their corresponding sediment samples. Nevertheless, the SLERA on the bay sediments revealed that adverse ecological effects to benthic species are expected to occur whereas the HHRA showed that adverse health effects are not expected to occur from the consumption of the mussels. CONCLUSIONS: With the help of a SLERA, it was possible to indicate which class of chlorinated organic compounds is of highest concern to assess and to improve the environmental quality of the bay. Monitoring of organochlorines and chlorpyrifos would be needed to control the future trend of pollution.
Show more [+] Less [-]Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges Full text
2012
O’Sullivan, Aisling | Wicke, Daniel | Cochrane, Tom
PURPOSE: Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. METHODS: Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. RESULTS: Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L−1 while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. CONCLUSIONS: Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.
Show more [+] Less [-]Approach for detecting mutagenicity of biodegraded and ozonated pharmaceuticals, metabolites and transformation products from a drinking water perspective Full text
2012
Gartiser, Stefan | Hafner, Christoph | Kronenberger-Schäfer, Kerstin | Happel, Oliver | Trautwein, Christoph | Kümmerer, Klaus
Many pharmaceuticals and related metabolites are not efficiently removed in sewage treatment plants and enter into surface water. There, they might be subject of drinking water abstraction and treatment by ozonation. In this study, a systematic approach for producing and effect-based testing of transformation products (TPs) during the drinking water ozonation process is proposed. For this, two pharmaceutical parent substances, three metabolites and one environmental degradation product were investigated with respect to their biodegradability and fate during drinking water ozonation. The Ames test (TA98, TA100) was used for the identification of mutagenic activity present in the solutions after testing inherent biodegradability and/or after ozonation of the samples. Suspicious results were complemented with the umu test. Due to the low substrate concentration required for ozonation, all ozonated samples were concentrated via solid phase extraction (SPE) before performing the Ames test. With the exception of piracetam, all substances were only incompletely biodegradable, suggesting the formation of stable TPs. Metformin, piracetam and guanylurea could not be removed completely by the ozonation process. We received some evidence that technical TPs are formed by ozonation of metformin and piracetam, whereas all tested metabolites were not detectable by analytical means after ozonation. In the case of guanylurea, one ozonation TP was identified by LC/MS. None of the experiments showed an increase of mutagenic effects in the Ames test. However, the SPE concentration procedure might lead to false-positive results due to the generation of mutagenic artefacts or might lead to false-negative results by missing adequate recovery efficiency. Thus, these investigations should always be accompanied by process blank controls that are carried out along the whole ozonation and SPE procedure. The study presented here is a first attempt to investigate the significance of transformation products by a systematic approach. However, the adequacy and sensitivity of the methodology need to be further investigated. The approach of combining biodegradation and ozonation with effect-based assays is a promising tool for the early detection of potential hazards from TPs as drinking water contaminants. It can support the strategy for the evaluation of substances and metabolites in drinking water. A multitude of possible factors which influence the results have to be carefully considered, among them the selectivity and sensibility of the mutagenicity test applied, the extraction method for concentrating the relevant compounds and the biocompatibility of the solvent. Therefore, the results have to be carefully interpreted, and possible false-negative and false-positive results should be considered.
Show more [+] Less [-]