Refine search
Results 141-150 of 1,966
Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils Full text
2013
Zhao, Yanping | Tan, Yinyue | Guo, Yong | Gu, Xueyuan | Wang, Xiaorong | Zhang, Yan
Tetracycline (TC), a common antibiotic, can behave as an efficient ligand with cations, but the effect of its interaction with heavy metal cations on the mobility of both species in soils has not been well evaluated. In this study, the complexation affinities of TC with Cd (II), Cu (II) and Pb (II) were examined using potentiometric titration and spectroscopic methods. The cosorption behavior of TC and metal ions onto three selected Chinese soils was evaluated using batch adsorption experiments. The presence of metal cations promoted TC adsorption through an ion bridging effect in the order Cu (II) > Pb (II) > Cd (II), which is in accordance with their complexation ability with TC. The addition of TC affects metal adsorption differently depending on the solution pH and metal type. Therefore, it is necessary to consider the complexation ability of TC and divalent metal cations when evaluating their mobility in soils.
Show more [+] Less [-]Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake Full text
2013
Wan, Xiao-ming | Tandy, Susan | Hockmann, Kerstin | Schulin, R. (Rainer)
A pot experiment was conducted to investigate the solubility and redox species of antimony (Sb) in a relocated shooting range soil and its uptake by Lolium perenne L. and Holcus lanatus L. under different water regimes. After 1-week waterlogging, the total Sb concentration in soil solution decreased from ∼110 μg L−1 to <20 μg L−1, and slowly increased over the following 4 weeks, with the dissolution of Fe and Mn (hydr)oxides. In this process, half of the Sb in soil solution was reduced to Sb(III), which greatly affected the plant uptake of Sb. Waterlogging increased shoot Sb concentrations of L. perenne by ∼10 fold but decreased uptake in H. lanatus by 80%. Results indicate that Sb might primarily be taken up as Sb(III) by L. perenne and as Sb(V) by H. lanatus. Temporary waterlogging of soil may increase the risk of trace elements entering the food chain.
Show more [+] Less [-]Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams Full text
2013
Rosa, Rodrigo dos Santos | Aguiar, Anna Carolina Fornero | Boëchat, Iola Gonçalves | Gücker, Björn
We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics.
Show more [+] Less [-]Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations Full text
2013
Cui, Xinyi | Mayer, Philipp | Gan, Jay
Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research.
Show more [+] Less [-]Effects of chlorimuron ethyl on terrestrial and wetland plants: Levels of, and time to recovery following sublethal exposure Full text
2013
Carpenter, David | Boutin, Céline | Allison, Jane E.
Current pesticide registration guidelines call for short-term testing of plants; long-term effects on vegetative parts and reproduction remain untested. The aims of our study were to determine level of recovery and recovery times for plants exposed to the sulfonylurea herbicide chlorimuron ethyl using data collected from single species, dose–response greenhouse experiments. The nine terrestrial and eight wetland species tested showed variable levels of recovery and recovery timeframes. Many species (six terrestrial and five wetland) were vegetatively stunted at sublethal doses and were reproductively impaired. Full recovery did not occur at all doses and maximum recovery times varied from 3 to 15 weeks in this controlled environment. In a complex community, affected species may be displaced by tolerant species, through interspecific competition, before they fully recover. It is plausible that individual populations could be diminished or eliminated through reduced seedbank inputs (annuals and perennials) and asexual reproduction (perennials).
Show more [+] Less [-]Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system Full text
2013
Wang, Ya | Jiao, Jiu Jimmy | Zhu, Sanyuan | Li, Yiliang
Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed.
Show more [+] Less [-]Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ Full text
2013
Regonne, Raïssa Kom | Martin, Florence | Mbawala, Augustin | Ngassoum, Martin Benoît | Jouanneau, Yves
Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils.
Show more [+] Less [-]Passive air sampling of organochlorine pesticides and polychlorinated biphenyls in the Yangtze River Delta, China: Concentrations, distributions, and cancer risk assessment Full text
2013
Zhang, Lifei | Dong, Liang | Yang, Wenlong | Zhou, Li | Shi, Shuangxin | Zhang, Xiulan | Niu, Shan | Li, Lingling | Wu, Zhongxiang | Huang, Yeru
The Yangtze River Delta (YRD) has been quickly industrialized and urbanized. Passive air sampling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) was carried out in the YRD in 2010–2011 to investigate their spatiotemporal distributions and estimate the risk of cancer from their inhalation. Annual concentrations were 151, 168, 18.8, 110, 17.9, and 35.0 pg m−3 for HCB, ∑DDTs, ∑HCHs, ∑chlordane, mirex, and PCBs, respectively. The highest OCP and PCB concentrations were generally detected in the autumn and winter. The average concentrations of OCPs and PCBs for the different site groups followed the order urban ≈ urban–rural transition > rural. The lifetime excess cancer risks from the inhalation of OCPs and PCBs were <1.0 × 10−6. The predicted cancer cases per lifetime associated with the inhalation of OCPs and PCBs are 12, 7, and 4 per ten thousand people for urban, urban–rural transition, and rural areas, respectively.
Show more [+] Less [-]Does urban vegetation mitigate air pollution in northern conditions? Full text
2013
Setälä, Heikki | Viippola, Viljami | Rantalainen, Anna-Lea | Pennanen, Arto | Yli-Pelkonen, Vesa
It is generally accepted that urban vegetation improves air quality and thereby enhances the well-being of citizens. However, empirical evidence on the potential of urban trees to mitigate air pollution is meager, particularly in northern climates with a short growing season. We studied the ability of urban park/forest vegetation to remove air pollutants (NO2, anthropogenic VOCs and particle deposition) using passive samplers in two Finnish cities. Concentrations of each pollutant in August (summer; leaf-period) and March (winter, leaf-free period) were slightly but often insignificantly lower under tree canopies than in adjacent open areas, suggesting that the role of foliage in removing air pollutants is insignificant. Furthermore, vegetation-related environmental variables (canopy closure, number and size of trees, density of understorey vegetation) did not explain the variation in pollution concentrations. Our results suggest that the ability of urban vegetation to remove air pollutants is minor in northern climates.
Show more [+] Less [-]Novel biospectroscopy sensor technologies towards environmental health monitoring in urban environments Full text
2013
Obinaju, Blessing E. | Martin, Francis L.
Biospectroscopy is an emerging inter-disciplinary field that exploits the application of sensor technologies [e.g., Fourier-transform infrared spectroscopy, Raman spectroscopy] to lend novel insights into biological questions. Methods involved are relatively non-destructive so samples can subsequently be analysed by more conventional approaches, facilitating deeper mechanistic insights. Fingerprint spectra are derived and these consist of wavenumber–absorbance intensities; within a typical biological experiment, a complex dataset is quickly generated. Biological samples range from biofluids to cytology to tissues derived from human or sentinel sources, and analyses can be carried out ex vivo or in situ in living tissue. A reference range of a designated normal state can be derived; anything outside this is potentially atypical and discriminating chemical entities identified. Computational approaches allow one to minimize within-category confounding factors. Because of ease of sample preparation, low-cost and high-throughput capability, biospectroscopy approaches herald a new greener means of environmental health monitoring in urban environments.
Show more [+] Less [-]