Refine search
Results 1401-1410 of 4,938
Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans Full text
2019
How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng | Li, Shang-Wei | Liao, Vivian Hsiu-Chuan
Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.
Show more [+] Less [-]Ozone exposure- and flux-yield response relationships for maize Full text
2019
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Pleijel, Håkan | Calatayud, Vicent
A stomatal ozone (O₃) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R² = 0.63). Based on the comparison of R² values of the response functions, POD₆ (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m⁻² s⁻¹) and AOT40 (accumulated hourly O₃ concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD₆ and AOT40 for 5% reduction in maize yield were 1.17 mmol m⁻² PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O₃ metric used, AOT40 or POD₆. The newly proposed response functions are relevant for O₃ risk assessment for this crop in Asia.
Show more [+] Less [-]Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China Full text
2019
Li, Xinming | Sun, Ye | An, Yunhe | Wang, Ran | Lin, Hong | Liu, Min | Li, Shuyin | Ma, Mingyue | Xiao, Chunling
In order to investigate the relationship between air pollution and the respiratory tract microbiota, 114 healthy volunteers aged 18–21 years were selected during the winter heating period in Northeast China; 35 from a lightly polluted region (group A), 40 from a moderately polluted region (group B) and 39 from a heavily polluted region (group C). Microbial genome DNA was extracted from throat swab samples to study the oral flora composition of the volunteers by amplifying and sequencing the V3 regions of prokaryotic 16S rRNA. Lung function tests were also performed. The relative abundance of Bacteroidetes and Fusobacteria were significantly lower and Firmicutes Proteonacteria and Actinobacteria higher in participants from polluted regions. Within bacteria classes, Bacterioida abundance was lower and Clostridia abundance higher in polluted areas, which was also reflected in the order of abundance. In samples from region C, the abundance of Prevotellaceae, Veillonellaceae, Porphyromonadaceae, Fusobacteriaceae Paraprevollaceae and Flavobacteriaceae were lowest among the 3 regions studied, whereas the abundance of Lachnospiraceae and Ruminococcaceae were the highest. From group A to group C, the relative class abundances of Prevotella, Veillonella, Fusobacterium, Camphylobacter and Capnocytophaga Porphyromonas, Peptostreptococcus and Moraxella became lower in polluted areas.Pulmonary function correlated with air pollution and the oropharyngeal microbiota differed within regions of high, medium and low air pollution. Thus, during the winter heating period in Northeast China, the imbalance of the oropharyngeal microbiota might be caused by air pollution and is likely associated with impairment of lung function in young people.
Show more [+] Less [-]Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC –QTOF-MS Full text
2019
Assress, Hailemariam Abrha | Nyoni, Hlengilizwe | Mamba, Bhekie B. | Msagati, Titus A.M.
The information acquired by high resolution quadrupole-time of flight mass spectrometry (QTOF-MS) allows target analysis as well as retrospective screening for the presence of suspect or unknown emerging pollutants which were not included in the target analysis. Targeted quantification of eight azole antifungal drugs in wastewater effluent as well as new and relatively simple retrospective suspect and non-target screening strategy for emerging pollutants using UHPLC-QTOF-MS is described in this work. More than 300 (parent compounds and transformation products) and 150 accurate masses were included in the retrospective suspect and non-target screening, respectively. Tentative identification of suspects and unknowns was based on accurate masses, peak intensity, blank subtraction, isotopic pattern (mSigma value), compound annotation using data bases such as KEGG and CHEBI, and fragmentation pattern interpretation. In the targeted analysis, clotrimazole, fluconazole, itraconazole, ketoconazole and posaconazole were detected in the effluent wastewater sample, fluconazole being with highest average concentration (302.38 ng L⁻¹). The retrospective screening resulted in the detection of 27 compounds that had not been included in the target analysis. The suspect compounds tentatively identified included atazanavir, citalopram, climbazole, bezafibrate estradiol, desmethylvenlafaxine, losartan carboxylic acid and cetirizine, of which citalopram, estradiol and cetirizine were confirmed using a standard. Carbamazepine, atrazine, efavirenz, lopinavir, fexofenadine and 5-methylbenzotriazole were among the compounds detected following the non-targeted screening approach, of which carbamazepine was confirmed using a standard. Given the detection of the target antifungals in the effluent, the findings are a call for a wide assessment of their occurrence in aquatic environments and their role in ecotoxicology as well as in selection of drug resistant fungi. The findings of this work further highlights the practical benefits obtained for the identification of a broader range of emerging pollutants in the environment when retrospective screening is applied to high resolution and high accuracy mass spectrometric data.
Show more [+] Less [-]Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico Full text
2019
Zamora-Barrios, Cesar Alejandro | Nandini, S. | Sarma, S.S.S.
Cyanotoxins from toxic blooms in lakes or eutrophic reservoirs are harmful to several organisms including zooplankton, which often act as vectors of these secondary metabolites, because they consume cyanobacteria, bioaccumulate the cyanotoxins and pass them on along the food chain. Microcystins are among the most commonly found cyanotoxins and often cause zooplankton mortality. Although cyanobacterial blooms are common and persistent in Mexican water bodies, information on the bioaccumulation of cyanotoxins is scarce. In this study we present data on the bioaccumulation of cyanotoxins from Planktothrix agardhii, Microcystis sp., Cylindrospermopsis raciborskii and Dolichospermum planctonicum blooms in the seston (suspended particulate matter more than 1.2 μm) by zooplankton and fish (tilapia (Oreochromis niloticus) and mesa silverside (Chirostoma jordani) samples from Lake Zumpango (Mexico City). The cyanotoxins were extracted from the seston, zooplankton and fish tissue by disintegration using mechanical homogenization and 75% methanol. After extraction, microcystins were measured using an ELISA kit (Envirologix). Concentration of microcystins expressed as equivalents, reached a maximum value of 117 μg g−1 on sestonic samples; in zooplankton they were in the range of 0.0070–0.29 μg g−1. The dominant zooplankton taxa included Acanthocyclops americanus copepodites, Daphnia laevis and Bosmina longirostris. Our results indicate twice the permissible limits of microcystins (0.04 μg kg−1 d−1) for consumption of cyanobacterial products in whole fish tissue of Chirostoma jordani. The data have been discussed with emphasis on the importance of regular monitoring of water bodies in Mexico to test the ecotoxicological impacts of cyanobacterial blooms and the risk that consumption of products with microcystins could promote.
Show more [+] Less [-]Microplastic pollution in the rivers of the Tibet Plateau Full text
2019
Jiang, Changbo | Yin, Lingshi | Li, Zhiwei | Wen, Xiaofeng | Luo, Xin | Hu, Shuping | Yang, Hanyuan | Long, Yuannan | Deng, Bin | Huang, Lingzhi | Liu, Yizhuang
The Tibet Plateau, the so-called Third Pole of the world, is home to the headstreams of many great rivers. The levels of microplastic pollution in those rivers, however, are unknown. In this study, surface water and sediment samples were collected from six sampling sites along five different rivers. The surface water and sediment samples were collected with a large flow sampler and a stainless steel shovel, respectively. The abundance of microplastics ranged from 483 to 967 items/m3 in the surface water and from 50 to 195 items/kg in the sediment. A large amount of small, fibrous, transparent microplastics were found in this study. Five types of microplastics with different chemical compositions were identified using micro-Raman spectroscopy: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). These results demonstrate that rivers in the Tibet Plateau have been contaminated by microplastics, not only in developed areas with intense human activity but also in remote areas, where microplastic pollution requires further attention.
Show more [+] Less [-]Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter Full text
2019
Liu, Yanbiao | Liu, Fuqiang | Qi, Zenglu | Shen, Chensi | Li, Fang | Ma, Chunyan | Huang, Manhong | Wang, Zhiwei | Li, Junjing
One of the topics gaining lots of recent attention is the antimony (Sb) pollution. We have designed a dual-functional electroactive filter consisting of one-dimensional (1-D) titanate nanowires and carbon nanotubes for simultaneous oxidation and sorption of Sb(III). Applying an external limited DC voltage assist the in-situ conversion of highly toxic Sb(III) to less toxic Sb(V). The Sb(III) removal kinetics and efficiency were enhanced with flow rate and applied voltage (e.g., the Sb(III) removal efficiency increased from 87.5% at 0 V to 96.2% at 2 V). This enhancement in kinetics and efficiency are originated from the flow-through design, more exposed sorption sites, electrochemical reactivity, and limited pore size on the filter. The titanate-CNT hybrid filters perform effectively across a wide pH range of 3–11. Only negligible inhibition was observed in the presence of nitrate, chloride, and carbonate at varying concentrations. Our analyses using STEM, XPS, or AFS demonstrate that Sb were mainly adsorbed by Ti. DFT calculations suggest that the Sb(III) oxidation kinetics can be accelerated by the applied electric field. Exhausted titanate-CNT filters can be effectively regenerated by using NaOH solution. Moreover, the Sb(III)-spiked tap water generated ∼2400 bed volumes with a >90% removal efficiency. This study provides new insights for rational design of continuous-flow filters for the decontamination of Sb and other similar heavy metal ions.
Show more [+] Less [-]Dietary intake of 4-nonylphenol and bisphenol A in Taiwanese population: Integrated risk assessment based on probabilistic and sensitive approach Full text
2019
Zhang, Weixiang | Liu, Shou-Chun | Chen, Hsiu-Ling | Lee, Ching-Chang
4-Nonylphenol (NP) and bisphenol A (BPA) are high-production and high-volume chemicals used to manufacture various commercial products. They are also ubiquitous contaminants that disrupt endocrine systems in wildlife and humans. We collected, from Taiwan cities with the highest food production, and analyzed, using high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS), 278 food samples for NP and BPA from 11 categories. We found background levels of 100% for NP and 72% for BPA in total samples. High levels of contamination (up to 918 and 49.4 μg/kg) were found in some foods of seafood and animal origin. We used a probabilistic approach to calculate daily dietary dose (Monte Carlo-estimated 95th percentile dietary exposure [MCS 95]) from the Taiwan National Food Consumption database for each sex- and age-specified population. For NP and BPA, the highest average daily dose (ADDs) were in the 4- to 6-year-old group (MCS 95 = 1.57/1.28 and 0.157/0.147 [Male/Female] μg/kg bw/day, respectively), and the lowest ADDs were in the ≥65-year-old group (MCS 95 = 0.674/0.581 and 0.054/0.045 [M/F] μg/kg bw/day, respectively). Based on the European Food Safety Authority (4 μg/kg bw/day for BPA) and Danish Institute of Safety and Toxicology guidelines (5 μg/kg bw/day for NP), the 95th percentile HQ of NP and BPA intake in different sex- and age-specified groups in Taiwan posed no risks through dietary exposure. The intake quantity and concentrations of grains, livestock, and seafood are important variables for the integrated risk of NP and BPA. In conclusion, a combination of multiple and long-term exposure via food consumption should be considered rather than individual endocrine-disrupting chemicals during dietary risk assessment in specific populations.The 95th percentile HQ of NP and BPA intake in different age and sex groups in Taiwan posed no risks through dietary exposure based on probabilistic and sensitive approach.
Show more [+] Less [-]Genotoxic effects of 4-nonylphenol and Cyproterone Acetate on Rana catesbeiana (anura) tadpoles and juveniles Full text
2019
Gregorio, L.S. | Franco-Belussi, L. | De Oliveira, C.
Genotoxic analyses are commonly used in ecotoxicological studies as early biomarkers to investigate the potential effects of environmental contaminants on biological models. Several pollutants can induce DNA damage and, therefore, counting micronuclei and other nuclear abnormalities are efficient tools to evaluate genotoxicity. Some pollutants such as 4-nonylphenol (NP), a detergent used mainly in industries, and Cyproterone Acetate (CPA), an antiandrogenic medicine, have already shown genotoxic effects on some vertebrates. However, although amphibians are considered bioindicators of environmental quality and their populations are declining worldwide, the effects of these compounds on anurans are not yet known and, therefore, we believe that it is important to investigate such effects on anurans. Since water contamination is one of the ultimate causes of amphibian decline, ecotoxicological studies are important to discuss the appropriate solutions to avoid species extinction. Thus, this study investigates the genotoxic effects on Rana catesbeiana tadpoles and juveniles after being exposed to 1, 10 and 100 μg/L NP and 0.025, 0.25 and 2.5 ng/L CPA, by counting the nuclear abnormalities after exposure. The laboratory experiments lasted 28 days. The experimental conditions were the same except for the water volume since tadpoles and juveniles exhibit different habits at different developmental stages. Compared to juveniles, tadpoles were more susceptible to both compounds as indicated by the increased nuclear abnormalities observed in the highest NP concentration and all tested CPA concentrations. The juveniles, on the other hand, responded only to the two highest CPA concentrations. We concluded that CPA, even at very low concentrations, is extremely harmful to both anuran developmental stages and, particularly, to tadpoles. The significant effects observed on tadpoles is an important outcome of this study since 100 μg/L or higher NP concentrations are frequently detected in the environment.
Show more [+] Less [-]BDE-209 induces male reproductive toxicity via cell cycle arrest and apoptosis mediated by DNA damage response signaling pathways Full text
2019
Decabromodiphenyl ether (BDE-209) is commonly used as a flame retardant, usually in products that were utilized in electronic equipment, plastics, furniture and textiles. To identify the impacts of BDE-209 on the male reproductive system and the underlying toxicological mechanisms, 40 male ICR mice were randomly divided into four groups, which were then exposed to BDE-209 at 0, 7.5, 25 and 75 mg kg−1 d−1 for four weeks, respectively. With regard to the in vitro study, GC-2spd cells were treated with BDE-209 at 0, 2, 8 and 32 μg mL−1 for 24 h, respectively. The results from the in vivo experiments showed that BDE-209 resulted in damage to the testis structure, led to cell apoptosis in testis and decreased sperm number and motility, while sperm malformation rates were significantly increased. Moreover, BDE-209 could induce oxidative stress with decreased testosterone levels, result in DNA damage and activate DNA damage response signaling pathways (ATM/Chk2, ATR/Chk1 and DNA-PKcs/XRCC4/DNA ligase Ⅳ). The data from the in vitro experiments showed that BDE-209 led to cytotoxicity by reducing cell viability and increasing LDH release as well. BDE-209 also induced DNA strand breaks, cell cycle arrest at G1 phase and elevated reactive oxygen species (ROS) level in GC-2 cells. These results suggested that BDE-209 could lead to male reproductive toxicity by inducing DNA damage and failure of DNA damage repair which resulted in cell cycle arrest and apoptosis of spermatogenic cell. The present study provided new evidence to elucidate the potential mechanism of male reproductive toxicity induced by BDE-209.
Show more [+] Less [-]