Refine search
Results 1401-1410 of 7,921
Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona
2021
Chakraborty, Debolina | Ethiraj, K.R. | Cantiracēkaran̲, Nā. | Mukherjee, Amitava
The extensive use of semiconducting nanoparticles such as quantum dots in biomedical and industrial products can lead to their inadvertent release into the freshwater system. Natural exudates in the aquatic system comprising extracellular polymeric substance (EPS) and protein-rich metabolites can eventually adsorb onto the quantum dots (QDs) surface and form an eco-corona. The alterations in the physio-chemical and toxicological behavior of CdSe/ZnS QDs under the influence of eco-corona in the freshwater system have not been explored yet. In the present study, lake water medium conditioned with exudate secreted by Scenedesmus obliquus was utilized as an eco-corona forming matrix. The time-based evolution of the eco-corona on the differently charged CdSe/ZnS QDs was analyzed using transmission electron microscopy and dynamic light scattering. Aging of amine-QDs in algal exudate for 72 h showed enhanced aggregation (Mean Hydrodynamic Diameter- 1969 nm) as compared to carboxyl-QDs (1543 nm). Further, eco-coronation tends to impart an overall negative charge to the QDs. The fluorescence intensity of amine-QDs was quenched by 84% due to the accumulation of higher eco-corona. An integrative effect of surface charge and accumulated eco-corona layer influenced the Cd²⁺ ion leaching from the QDs. An enhancement in the algal cell viability treated with carboxyl - CdSe/ZnS (90%) and amine- CdSe/ZnS QDs (94%) aged for 72 h suggested that eco-corona can effectively mitigate the inherent toxicity of the QDs. The oxidative stress markers in the algal cells (LPO, SOD, and CAT) were in correlation with the cytotoxicity results. The algal photosynthetic efficiency depended on the deposition of eco-coronated QDs on the cell surface. Cellular uptake results indicated low Cd²⁺ concentration of nearly 13.9 and 11.5% for carboxyl- and amine- CdSe/ZnS QDs respectively. This suggests that eco-coronation directly influences the bioavailability of engineered nanoparticles.
Show more [+] Less [-]Characterization of the distribution, source, and potential ecological risk of perfluorinated alkyl substances (PFASs) in the inland river basin of Longgang District, South China
2021
Huang, Chushan | Zhang, Jiaji | Hu, Guocheng | Zhang, Lijuan | Chen, Haibo | Wei, Dongyang | Cai, Dan | Yu, Yunjiang | Li, Xin | Ding, Ping | Li, Jing
Previous studies of perfluorinated alkyl substances (PFASs) in receiving water bodies of typical industrial parks under the low-carbon development mode are scarce. In the present study, 18 PFASs were analyzed in surface water and sediment samples of the inland river basin in Longgang District in 2017. The ΣPFAS concentrations in surface water (drought and rainy periods) and sediment ranged from 15.17 to 948.50 ng/L, 11.56–561.14 ng/L, and 1.07–28.94 ng/g dw, respectively. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS) were the dominant pollutants in surface water, with maximum concentrations of 867.68 ng/L, 288.28 ng/L, and 245.09 ng/L, respectively. Meanwhile, PFOS, perfluoroundecanoic acid (PFUdA), PFBS, and perfluorodecanoic acid (PFDA) were the major PFASs in the sediment samples, with maximum concentrations of 9.83 ng/g dw, 11.86 ng/g dw, 5.30 ng/g dw, and 5.23 ng/g dw, respectively. In addition, PFOA and PFOS resulted from similar sources in sediment and surface water samples (P < 0.05). The risk quotient value (RQ) results showed that the control of PFOS in the treatment of pollutants in the inland river basin of Longgang District deserves more attention.
Show more [+] Less [-]Nanoremediation: Sunlight mediated dye degradation using electrospun PAN/CuO–ZnO nanofibrous composites
2021
Jena, Sandeep Kumar | Sadasivam, Rajkumar | Packirisamy, Gopinath | Saravanan, Pichiah
This work demonstrated the development of nanofiber templated metal oxide nanocomposites by hydrothermal and calcination methods for photocatalytic degradation using Congo red (CR) as model pollutant. Herein, we developed PAN/CuO–ZnO nanocomposites by the electrospinning technique followed by heat treatment process i.e hydrothermal and calcination. The obtained nanofibrous composites were characterized by various analytical techniques such as X-Ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TG), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Photoluminescence (PL) and UV–Vis diffuse reflectance spectroscopy (DRS) studies. The results demostrated that the nanocomposites obtained through calcination possess better optical response with robust electronic structures. This is due to the better charge separation of excited electron-hole pairs of p-n heterostructured PAN/CuO–ZnO hybrid nanocomposites. The photocatalytic efficiency is found to be 98% and 93% for nanocomposites obtained through calcination and hydrothermal methods respectively. The reusability studies confirmed the stability and viability of multiple utilizations of photocatalysts. Furthermore, the photocatalytic mechanism corroborated the photocatalytic properties of the integrated facile nanofibrous-metallic (PAN/CuO–ZnO) composites and hence can be implemented in water remediation effectively.
Show more [+] Less [-]Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution
2021
Celis-Hernández, Omar | Ávila, Enrique | Ward, Raymond D. | Rodríguez-Santiago, María Amparo | Aguirre-Téllez, José Alberto
Sessile benthic organisms are considered good bioindicators for monitoring environmental quality of coastal ecosystems. However, these environments are impacted by new pollutants such as microplastics (MPs), where there is limited information about organisms that can be used as reliable bioindicators of these emerging contaminants. We evaluated MP concentrations in three compartments: surface sediment, water and in three marine sponge species (Haliclona implexiformis, Halichondria melanadocia and Amorphinopsis atlantica), to determine whether these organisms accumulate MPs and reflect their possible sources. Results showed MPs in all three compartments. Average concentrations ranged from 1861 to 3456 items kg⁻¹ of dry weight in marine sponges, 130 to 287 items L⁻¹ in water and 6 to 11 items kg⁻¹ in sediment. The maximum MP concentration was in the sponge A. atlantica, which registered 5000 items kg⁻¹ of dry weight, in water was 670 items L⁻¹ and in sediment was 28 items kg⁻¹, these values were found in the disturbed study area. The three sponge species exhibited MP bioaccumulation and showed significant differences between disturbed and pristine sites (F = 11.2, p < 0.05), suggesting their use as bioindicators of MP.
Show more [+] Less [-]Algae-induced photodegradation of antibiotics: A review
2021
Wei, Lianxue | Li, Haixiao | Lü, Jinfeng
Antibiotics are a typical group of pharmaceutical and personal care products (PPCPs) with emerging pollutant effects. The presence of residual antibiotics in the environment is a prominent issue owing to their potential hazards, toxic effects, and persistence. Several treatments have been carried out in aquatic environments in order to eliminate antibiotic residues. Among these, photodegradation is regarded as an environmentally-friendly and efficient option. Indirect photodegradation is the main pathway for the degradation of residual antibiotics in natural water, as opposed to direct photodegradation. Algae, working as photosensitizers, play an important role in the indirect photolysis of residual antibiotics in natural water bodies. They promote this reaction by secreting extracellular organic matters (EOMs) and inducing the generation of active species. In order to provide a thorough understanding of the effects of algae on residual antibiotic degradation in the environment, this paper comprehensively reviews the latest research regarding algae-induced antibiotic photodegradation. The summary of the different pathways and photosensitive mechanisms involved in this process show that EOMs are indispensable to antibiotic photodegradation. The influencing factors of algae-induced photodegradation are also discussed here: these include algae species, antibiotic types, and environmental variables such as light source, ferric ion presence, temperature, and ultrasound treatment. Based on the review of existing literature, this paper also considers several pathways for the future study of algae-induced antibiotic photodegradation.
Show more [+] Less [-]The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus
2021
Ren, Xianyun | Xu, Yao | Yu, Zhenxing | Mu, Cuimin | Liu, Ping | Li, Jian
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g⁻¹ body weight (b.w.) or sulforaphane (SFN) at 5 μg g⁻¹ b.w., and then were exposed to 40 mg L⁻¹ CdCl₂ for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Show more [+] Less [-]Toxic response of the freshwater green algae Chlorella pyrenoidosa to combined effect of flotation reagent butyl xanthate and nickel
2021
Li, Hao | Yao, Jun | Duran, Robert | Liu, Jianli | Min, Ning | Chen, Zhihui | Zhu, Xiaozhe | Zhao, Chenchen | Ma, Bo | Pang, Wancheng | Li, Miaomiao | Cao, Ying | Liu, Bang
Butyl Xanthate (BX) is a typical flotation reagent used to extract non-ferrous nickel ores, discharged into the surrounding environment of mining areas in large quantities. However, few studies have focused on the toxicity of combined pollution of BX and nickel (Ni) on aquatic plants, especially phytoplankton, the main producer of aquatic ecosystems. The toxicity and potential mechanism of single and combined pollution of BX and Ni at different concentrations (0–20 mg L⁻¹) on typical freshwater algae (Chlorella pyrenoidosa) were studied. BX slightly stimulated the growth of C. pyrenoidosa on the first day, but Ni and Ni/BX mixture significantly inhibited it during incubation. Results showed that the inhibition rate (I) of the pollutants on the growth of C. pyrenoidosa followed the order: Ni/BX mixture > Ni > BX. The 96-h 20% effective inhibitory concentrations (96h-EC₂₀) of Ni and BX on C. pyrenoidosa growth were 3.86 mg L⁻¹ and 19.25 mg L⁻¹, respectively, indicating C. pyrenoidosa was sensitive to pollutants. The content of total soluble protein (TSP) and chlorophyll a (Chl-a) changed significantly, which may be caused by the damage of pollutants to cell structures (cell membranes and chloroplasts). In addition, the I of pollutants on C. pyrenoidosa growth was related to dose, superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA). The increasement of reactive oxygen species (ROS), antioxidant enzymes (SOD and CAT), and MDA content, suggested C. pyrenoidosa suffered from oxidative stress, leading to lipid oxidation. These results will help to understand the toxicity mechanism of pollutants in typical mining areas and assess the environmental risks of pollutants to primary producers in aquatic ecosystems.
Show more [+] Less [-]Urinary metabolites of polycyclic aromatic hydrocarbons after short-term fine particulate matter exposure: A randomized crossover trial of air filtration
2021
Shi, Jiazhang | Zhao, Yan | Xue, Lijun | Li, Guoxing | Wu, Ziyuan | Guo, Xinbiao | Wang, Bin | Huang, Jing
Research on the relationship between short-term exposure to fine particulate matter (PM₂.₅) and urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) is sparse in the nonoccupationally exposed populations. A quasi-experimental observation of haze events nested within a randomized crossover trial of alternative 1-week real or sham indoor air filtration was conducted to evaluate the associations of urinary monohydroxy-PAHs (OH-PAHs) with short-term exposure to PM₂.₅ and PM₂.₅-bound PAHs. The study was conducted among 57 healthy college students in Beijing, China. PM₂.₅-bound PAHs and urinary OH-PAHs were quantified using gas chromatography coupled with a triple-quadrupole tandem mass spectrometer. Linear mixed-effect models were applied to evaluate the association of urinary OH-PAHs with time-weighted personal PM₂.₅ and PM₂.₅-bound PAHs, controlling for potentially confounding variables. The results demonstrated that air filtration could markedly reduce external exposure to PM₂.₅ and PM₂.₅-bound parent, nitrated, and oxygenated PAHs. In the intervention trial, the urinary concentrations of 2-hydroxyfluorene (2-OH-FLU) and 9-hydroxyphenanthrene (9-OH-PHE) were elevated significantly by 16.5% (95% CI, 2.1%, 33.1%) and 37.9% (95% CI, 8.4%, 75.4%), respectively, in association with a doubling increase in personal PM₂.₅ exposure. Urinary 9-OH-PHE was also significantly positively associated with the increase in the sum of PM₂.₅-bound parent PAHs. Furthermore, the levels of urinary OH-PAHs such as 2-OH-FLU and 9-OH-PHE in the haze events were elevated by 31.1% (95% CI, 8.7%, 53.4%) and 73.5% (95% CI, 16.0%, 131.0%), respectively, in association with a doubling increase in personal PM₂.₅ exposure. The findings indicated that urinary 2-OH-FLU and 9-OH-PHE could serve as potential internal exposure biomarkers for assessing short-term PM₂.₅ exposure in nonoccupational populations.
Show more [+] Less [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
Show more [+] Less [-]Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy
2021
Ham, Jiyeon | Lim, Whasun | Song, Gwonhwa
Pendimethalin (PDM) is a dinitroaniline crop pesticide that is extensively utilized worldwide. However, the reproductive toxicity and cellular mechanisms of PDM have not been identified. Therefore, we elucidated the adverse effects of PDM on the reproductive system using mouse testicular Leydig and Sertoli cells (TM3 and TM4 cells, respectively). Our results demonstrated that PDM suppressed the viability and proliferation of TM3 and TM4 cells. Additionally, PDM induced cytosolic calcium upregulation and permeabilization of mitochondrial membrane potential in both TM3 and TM4 cells. We also verified that PDM activates the endoplasmic reticulum (ER) stress pathway and autophagy. Furthermore, we confirmed that activation of ER stress and autophagy were blocked by 2-aminoethoxydiphenyl borate (2-APB) treatment. Finally, we confirmed PDM-induced cell cycle arrest and apoptosis in TM3 and TM4 cells. Thus, we first demonstrated that PDM impedes the survival of testis cells, and further, their function.
Show more [+] Less [-]